Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach

<p>Cirrus thinning is a newly emerging geoengineering approach to mitigate global warming. To sufficiently exploit the potential cooling effect of cirrus thinning with the seeding approach, a flexible seeding method is used to calculate the optimal seeding number concentration, which is just e...

Full description

Bibliographic Details
Main Authors: J. Liu, X. Shi
Format: Article
Language:English
Published: Copernicus Publications 2021-07-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/10609/2021/acp-21-10609-2021.pdf
id doaj-1d26e1f2e0af449c8f5bf2ccef59edc4
record_format Article
spelling doaj-1d26e1f2e0af449c8f5bf2ccef59edc42021-07-14T09:31:19ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-07-0121106091062410.5194/acp-21-10609-2021Estimating the potential cooling effect of cirrus thinning achieved via the seeding approachJ. LiuX. Shi<p>Cirrus thinning is a newly emerging geoengineering approach to mitigate global warming. To sufficiently exploit the potential cooling effect of cirrus thinning with the seeding approach, a flexible seeding method is used to calculate the optimal seeding number concentration, which is just enough to prevent homogeneous ice nucleation from occurring. A simulation using the Community Atmosphere Model version 5 (CAM5) with the flexible seeding method shows a global cooling effect of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.36</mn><mo>±</mo><mn mathvariant="normal">0.18</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b8cdd28dcfd60765569f784fad31f311"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10609-2021-ie00001.svg" width="64pt" height="10pt" src="acp-21-10609-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span>, which is approximately two-thirds of that from artificially turning off homogeneous nucleation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.98</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fe7a8cd09bcac493042c0e55c50c4ed1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10609-2021-ie00002.svg" width="64pt" height="10pt" src="acp-21-10609-2021-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span>). However, simulations with fixed seeding ice nuclei particle number concentrations of 20 and 200 <span class="inline-formula">L<sup>−1</sup></span> show a weak cooling effect of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.27</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1ddc38e443d1a5dbf4096ec9fc912034"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10609-2021-ie00003.svg" width="64pt" height="10pt" src="acp-21-10609-2021-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span> and warming effect of <span class="inline-formula">0.35±0.28</span> <span class="inline-formula">W m<sup>−2</sup></span>, respectively. Further analysis shows that cirrus seeding leads to a significant warming effect of liquid and mixed-phase clouds, which counteracts the cooling effect of cirrus clouds. This counteraction is more prominent at low latitudes and leads to a pronounced net warming effect over some low-latitude regions. The sensitivity experiment shows that cirrus seeding carried out at latitudes with solar noon zenith angles greater than 12<span class="inline-formula"><sup>∘</sup></span> could yield a stronger global cooling effect of <span class="inline-formula">−2.00</span> <span class="inline-formula">±</span> 0.25 <span class="inline-formula">W m<sup>−2</sup></span>. Overall, the potential cooling effect of cirrus thinning is considerable, and the flexible seeding method is essential.</p>https://acp.copernicus.org/articles/21/10609/2021/acp-21-10609-2021.pdf
collection DOAJ
language English
format Article
sources DOAJ
author J. Liu
X. Shi
spellingShingle J. Liu
X. Shi
Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
Atmospheric Chemistry and Physics
author_facet J. Liu
X. Shi
author_sort J. Liu
title Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
title_short Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
title_full Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
title_fullStr Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
title_full_unstemmed Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
title_sort estimating the potential cooling effect of cirrus thinning achieved via the seeding approach
publisher Copernicus Publications
series Atmospheric Chemistry and Physics
issn 1680-7316
1680-7324
publishDate 2021-07-01
description <p>Cirrus thinning is a newly emerging geoengineering approach to mitigate global warming. To sufficiently exploit the potential cooling effect of cirrus thinning with the seeding approach, a flexible seeding method is used to calculate the optimal seeding number concentration, which is just enough to prevent homogeneous ice nucleation from occurring. A simulation using the Community Atmosphere Model version 5 (CAM5) with the flexible seeding method shows a global cooling effect of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.36</mn><mo>±</mo><mn mathvariant="normal">0.18</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="b8cdd28dcfd60765569f784fad31f311"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10609-2021-ie00001.svg" width="64pt" height="10pt" src="acp-21-10609-2021-ie00001.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span>, which is approximately two-thirds of that from artificially turning off homogeneous nucleation (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.98</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="fe7a8cd09bcac493042c0e55c50c4ed1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10609-2021-ie00002.svg" width="64pt" height="10pt" src="acp-21-10609-2021-ie00002.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span>). However, simulations with fixed seeding ice nuclei particle number concentrations of 20 and 200 <span class="inline-formula">L<sup>−1</sup></span> show a weak cooling effect of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M6" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.27</mn><mo>±</mo><mn mathvariant="normal">0.26</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="64pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="1ddc38e443d1a5dbf4096ec9fc912034"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-10609-2021-ie00003.svg" width="64pt" height="10pt" src="acp-21-10609-2021-ie00003.png"/></svg:svg></span></span> <span class="inline-formula">W m<sup>−2</sup></span> and warming effect of <span class="inline-formula">0.35±0.28</span> <span class="inline-formula">W m<sup>−2</sup></span>, respectively. Further analysis shows that cirrus seeding leads to a significant warming effect of liquid and mixed-phase clouds, which counteracts the cooling effect of cirrus clouds. This counteraction is more prominent at low latitudes and leads to a pronounced net warming effect over some low-latitude regions. The sensitivity experiment shows that cirrus seeding carried out at latitudes with solar noon zenith angles greater than 12<span class="inline-formula"><sup>∘</sup></span> could yield a stronger global cooling effect of <span class="inline-formula">−2.00</span> <span class="inline-formula">±</span> 0.25 <span class="inline-formula">W m<sup>−2</sup></span>. Overall, the potential cooling effect of cirrus thinning is considerable, and the flexible seeding method is essential.</p>
url https://acp.copernicus.org/articles/21/10609/2021/acp-21-10609-2021.pdf
work_keys_str_mv AT jliu estimatingthepotentialcoolingeffectofcirrusthinningachievedviatheseedingapproach
AT xshi estimatingthepotentialcoolingeffectofcirrusthinningachievedviatheseedingapproach
_version_ 1721303108576870400