Hydrothermal Synthesis and Mechanism of Unusual Zigzag Ag2Te and Ag2Te/C Core-Shell Nanostructures

A single step surfactant-assisted hydrothermal route has been developed for the synthesis of zigzag silver telluride nanowires with diameter of 50–60 nm and length of several tens of micrometers. Silver nitrate (AgNO3) and sodium tellurite (Na2TeO3), are the precursors and polyvinylpyrrolidone (PVP)...

Full description

Bibliographic Details
Main Authors: Saima Manzoor, Yumin Liu, Zhongyuan Yu, Xiuli Fu, Guijun Ban
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Nanomaterials
Online Access:http://dx.doi.org/10.1155/2014/350981
Description
Summary:A single step surfactant-assisted hydrothermal route has been developed for the synthesis of zigzag silver telluride nanowires with diameter of 50–60 nm and length of several tens of micrometers. Silver nitrate (AgNO3) and sodium tellurite (Na2TeO3), are the precursors and polyvinylpyrrolidone (PVP) is used as surfactant in the presence of the reducing agent, that is, hydrazine hydrate (N2H4·H2O). In addition to the zigzag nanowires a facile hydrothermal reduction-carbonization route is proposed for the preparation of uniform core-shell Ag2Te/C nanowires. In case of Ag2Te/C synthesis process the same precursors are employed for Ag and Te along with the ethylene glycol used as reducing agent and glucose as the carbonizing agent. Morphological and compositional properties of the prepared products are analyzed with the help of scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The detailed formation mechanism of the zigzag morphology and reduction-carbonization growth mechanism for core-shell nanowires are illustrated on the bases of experimental results.
ISSN:1687-4110
1687-4129