Soil–atmosphere exchange of carbonyl sulfide in a Mediterranean citrus orchard

<p>Carbonyl sulfide (COS) is used as a tracer of <span class="inline-formula">CO<sub>2</sub></span> exchange at the ecosystem and larger scales. The robustness of this approach depends on knowledge of the soil contribution to the ecosystem fluxes, which is unc...

Full description

Bibliographic Details
Main Authors: F. Yang, R. Qubaja, F. Tatarinov, R. Stern, D. Yakir
Format: Article
Language:English
Published: Copernicus Publications 2019-03-01
Series:Atmospheric Chemistry and Physics
Online Access:https://www.atmos-chem-phys.net/19/3873/2019/acp-19-3873-2019.pdf
Description
Summary:<p>Carbonyl sulfide (COS) is used as a tracer of <span class="inline-formula">CO<sub>2</sub></span> exchange at the ecosystem and larger scales. The robustness of this approach depends on knowledge of the soil contribution to the ecosystem fluxes, which is uncertain at present. We assessed the spatial and temporal variations in soil COS and <span class="inline-formula">CO<sub>2</sub></span> fluxes in a Mediterranean citrus orchard combining surface flux chambers and soil concentration gradients. The spatial heterogeneity in soil COS exchange indicated net uptake below and between trees of up to 4.6&thinsp;pmol&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span> and net emission in sun-exposed soil between rows of up to 2.6&thinsp;pmol&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>, with an overall mean uptake value of <span class="inline-formula">1.1±0.1</span>&thinsp;pmol&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>. Soil COS concentrations decreased with soil depth from atmospheric levels of <span class="inline-formula">∼450</span> to <span class="inline-formula">∼100</span>&thinsp;ppt at 20&thinsp;cm depth, while <span class="inline-formula">CO<sub>2</sub></span> concentrations increased from <span class="inline-formula">∼400</span> to <span class="inline-formula">∼5000</span>&thinsp;ppm. COS flux estimates from the soil concentration gradients were, on average, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">1.0</mn><mo>±</mo><mn mathvariant="normal">0.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="d3b7670ba50af2849ee19a5b60da9301"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-3873-2019-ie00001.svg" width="52pt" height="10pt" src="acp-19-3873-2019-ie00001.png"/></svg:svg></span></span>&thinsp;pmol&thinsp;m<span class="inline-formula"><sup>−2</sup></span>&thinsp;s<span class="inline-formula"><sup>−1</sup></span>, consistent with the chamber measurements. A soil COS flux algorithm driven by soil moisture and temperature (5&thinsp;cm depth) and distance from the nearest tree, could explain 75&thinsp;% of variance in soil COS flux. Soil relative uptake, the normalized ratio of COS to <span class="inline-formula">CO<sub>2</sub></span> fluxes was, on average, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>-</mo><mn mathvariant="normal">0.4</mn><mo>±</mo><mn mathvariant="normal">0.3</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="760fb09755f9457c52dd8bc50ff62bf4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-19-3873-2019-ie00002.svg" width="52pt" height="10pt" src="acp-19-3873-2019-ie00002.png"/></svg:svg></span></span> and showed a general exponential response to soil temperature. The results indicated that soil COS fluxes at our study site were dominated by uptake, with relatively small net fluxes compared to both soil respiration and reported canopy COS fluxes. Such a result should facilitate the application of COS as a powerful tracer of ecosystem <span class="inline-formula">CO<sub>2</sub></span> exchange.</p>
ISSN:1680-7316
1680-7324