Global Carbon Budget 2020

<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is import...

Full description

Bibliographic Details
Main Authors: P. Friedlingstein, M. O'Sullivan, M. W. Jones, R. M. Andrew, J. Hauck, A. Olsen, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, J. G. Canadell, P. Ciais, R. B. Jackson, S. Alin, L. E. O. C. Aragão, A. Arneth, V. Arora, N. R. Bates, M. Becker, A. Benoit-Cattin, H. C. Bittig, L. Bopp, S. Bultan, N. Chandra, F. Chevallier, L. P. Chini, W. Evans, L. Florentie, P. M. Forster, T. Gasser, M. Gehlen, D. Gilfillan, T. Gkritzalis, L. Gregor, N. Gruber, I. Harris, K. Hartung, V. Haverd, R. A. Houghton, T. Ilyina, A. K. Jain, E. Joetzjer, K. Kadono, E. Kato, V. Kitidis, J. I. Korsbakken, P. Landschützer, N. Lefèvre, A. Lenton, S. Lienert, Z. Liu, D. Lombardozzi, G. Marland, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, Y. Niwa, K. O'Brien, T. Ono, P. I. Palmer, D. Pierrot, B. Poulter, L. Resplandy, E. Robertson, C. Rödenbeck, J. Schwinger, R. Séférian, I. Skjelvan, A. J. P. Smith, A. J. Sutton, T. Tanhua, P. P. Tans, H. Tian, B. Tilbrook, G. van der Werf, N. Vuichard, A. P. Walker, R. Wanninkhof, A. J. Watson, D. Willis, A. J. Wiltshire, W. Yuan, X. Yue, S. Zaehle
Format: Article
Language:English
Published: Copernicus Publications 2020-12-01
Series:Earth System Science Data
Online Access:https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.pdf
id doaj-1da6f41a610b478ea6effb2c5d021e45
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author P. Friedlingstein
P. Friedlingstein
M. O'Sullivan
M. W. Jones
R. M. Andrew
J. Hauck
A. Olsen
A. Olsen
G. P. Peters
W. Peters
W. Peters
J. Pongratz
J. Pongratz
S. Sitch
C. Le Quéré
J. G. Canadell
P. Ciais
R. B. Jackson
S. Alin
L. E. O. C. Aragão
L. E. O. C. Aragão
A. Arneth
V. Arora
N. R. Bates
N. R. Bates
M. Becker
M. Becker
A. Benoit-Cattin
H. C. Bittig
L. Bopp
S. Bultan
N. Chandra
N. Chandra
F. Chevallier
L. P. Chini
W. Evans
L. Florentie
P. M. Forster
T. Gasser
M. Gehlen
D. Gilfillan
T. Gkritzalis
L. Gregor
N. Gruber
I. Harris
K. Hartung
K. Hartung
V. Haverd
R. A. Houghton
T. Ilyina
A. K. Jain
E. Joetzjer
K. Kadono
E. Kato
V. Kitidis
J. I. Korsbakken
P. Landschützer
N. Lefèvre
A. Lenton
S. Lienert
Z. Liu
D. Lombardozzi
G. Marland
G. Marland
N. Metzl
D. R. Munro
D. R. Munro
J. E. M. S. Nabel
S.-I. Nakaoka
Y. Niwa
Y. Niwa
K. O'Brien
K. O'Brien
T. Ono
P. I. Palmer
P. I. Palmer
D. Pierrot
B. Poulter
L. Resplandy
E. Robertson
C. Rödenbeck
J. Schwinger
J. Schwinger
R. Séférian
I. Skjelvan
I. Skjelvan
A. J. P. Smith
A. J. Sutton
T. Tanhua
P. P. Tans
H. Tian
B. Tilbrook
B. Tilbrook
G. van der Werf
N. Vuichard
A. P. Walker
R. Wanninkhof
A. J. Watson
D. Willis
A. J. Wiltshire
W. Yuan
X. Yue
S. Zaehle
spellingShingle P. Friedlingstein
P. Friedlingstein
M. O'Sullivan
M. W. Jones
R. M. Andrew
J. Hauck
A. Olsen
A. Olsen
G. P. Peters
W. Peters
W. Peters
J. Pongratz
J. Pongratz
S. Sitch
C. Le Quéré
J. G. Canadell
P. Ciais
R. B. Jackson
S. Alin
L. E. O. C. Aragão
L. E. O. C. Aragão
A. Arneth
V. Arora
N. R. Bates
N. R. Bates
M. Becker
M. Becker
A. Benoit-Cattin
H. C. Bittig
L. Bopp
S. Bultan
N. Chandra
N. Chandra
F. Chevallier
L. P. Chini
W. Evans
L. Florentie
P. M. Forster
T. Gasser
M. Gehlen
D. Gilfillan
T. Gkritzalis
L. Gregor
N. Gruber
I. Harris
K. Hartung
K. Hartung
V. Haverd
R. A. Houghton
T. Ilyina
A. K. Jain
E. Joetzjer
K. Kadono
E. Kato
V. Kitidis
J. I. Korsbakken
P. Landschützer
N. Lefèvre
A. Lenton
S. Lienert
Z. Liu
D. Lombardozzi
G. Marland
G. Marland
N. Metzl
D. R. Munro
D. R. Munro
J. E. M. S. Nabel
S.-I. Nakaoka
Y. Niwa
Y. Niwa
K. O'Brien
K. O'Brien
T. Ono
P. I. Palmer
P. I. Palmer
D. Pierrot
B. Poulter
L. Resplandy
E. Robertson
C. Rödenbeck
J. Schwinger
J. Schwinger
R. Séférian
I. Skjelvan
I. Skjelvan
A. J. P. Smith
A. J. Sutton
T. Tanhua
P. P. Tans
H. Tian
B. Tilbrook
B. Tilbrook
G. van der Werf
N. Vuichard
A. P. Walker
R. Wanninkhof
A. J. Watson
D. Willis
A. J. Wiltshire
W. Yuan
X. Yue
S. Zaehle
Global Carbon Budget 2020
Earth System Science Data
author_facet P. Friedlingstein
P. Friedlingstein
M. O'Sullivan
M. W. Jones
R. M. Andrew
J. Hauck
A. Olsen
A. Olsen
G. P. Peters
W. Peters
W. Peters
J. Pongratz
J. Pongratz
S. Sitch
C. Le Quéré
J. G. Canadell
P. Ciais
R. B. Jackson
S. Alin
L. E. O. C. Aragão
L. E. O. C. Aragão
A. Arneth
V. Arora
N. R. Bates
N. R. Bates
M. Becker
M. Becker
A. Benoit-Cattin
H. C. Bittig
L. Bopp
S. Bultan
N. Chandra
N. Chandra
F. Chevallier
L. P. Chini
W. Evans
L. Florentie
P. M. Forster
T. Gasser
M. Gehlen
D. Gilfillan
T. Gkritzalis
L. Gregor
N. Gruber
I. Harris
K. Hartung
K. Hartung
V. Haverd
R. A. Houghton
T. Ilyina
A. K. Jain
E. Joetzjer
K. Kadono
E. Kato
V. Kitidis
J. I. Korsbakken
P. Landschützer
N. Lefèvre
A. Lenton
S. Lienert
Z. Liu
D. Lombardozzi
G. Marland
G. Marland
N. Metzl
D. R. Munro
D. R. Munro
J. E. M. S. Nabel
S.-I. Nakaoka
Y. Niwa
Y. Niwa
K. O'Brien
K. O'Brien
T. Ono
P. I. Palmer
P. I. Palmer
D. Pierrot
B. Poulter
L. Resplandy
E. Robertson
C. Rödenbeck
J. Schwinger
J. Schwinger
R. Séférian
I. Skjelvan
I. Skjelvan
A. J. P. Smith
A. J. Sutton
T. Tanhua
P. P. Tans
H. Tian
B. Tilbrook
B. Tilbrook
G. van der Werf
N. Vuichard
A. P. Walker
R. Wanninkhof
A. J. Watson
D. Willis
A. J. Wiltshire
W. Yuan
X. Yue
S. Zaehle
author_sort P. Friedlingstein
title Global Carbon Budget 2020
title_short Global Carbon Budget 2020
title_full Global Carbon Budget 2020
title_fullStr Global Carbon Budget 2020
title_full_unstemmed Global Carbon Budget 2020
title_sort global carbon budget 2020
publisher Copernicus Publications
series Earth System Science Data
issn 1866-3508
1866-3516
publishDate 2020-12-01
description <p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO<span class="inline-formula"><sub>2</sub></span> emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy statistics and cement production data, while emissions from land-use change (<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration is measured directly and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual changes in concentration. The ocean CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) and terrestrial CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as <span class="inline-formula">±1<i>σ</i></span>. For the last decade available (2010–2019), <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was 9.6&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> when the cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.6&thinsp;<span class="inline-formula">±</span>&thinsp;0.7&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>. For the same decade, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.1&thinsp;<span class="inline-formula">±</span>&thinsp;0.02&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (2.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.01&thinsp;ppm&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> 2.5&thinsp;<span class="inline-formula">±</span>&thinsp; 0.6&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> 3.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.9&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, with a budget imbalance <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">−</span>0.1&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was only about 0.1&thinsp;% with fossil emissions increasing to 9.9&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.7&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> when cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.8&thinsp;<span class="inline-formula">±</span>&thinsp;0.7&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, for total anthropogenic CO<span class="inline-formula"><sub>2</sub></span> emissions of 11.5&thinsp;<span class="inline-formula">±</span>&thinsp;0.9&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (42.2&thinsp;<span class="inline-formula">±</span>&thinsp;3.3&thinsp;GtCO<span class="inline-formula"><sub>2</sub></span>). Also for 2019, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.2&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (2.5&thinsp;<span class="inline-formula">±</span>&thinsp;0.1&thinsp;ppm&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> was 2.6&thinsp;<span class="inline-formula">±</span>&thinsp;0.6&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> was 3.1&thinsp;<span class="inline-formula">±</span>&thinsp;1.2&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of 0.3&thinsp;GtC. The global atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration reached 409.85&thinsp;<span class="inline-formula">±</span>&thinsp;0.1&thinsp;ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> relative to 2019 of about <span class="inline-formula">−</span>7&thinsp;% (median estimate) based on individual estimates from four studies of <span class="inline-formula">−</span>6&thinsp;%, <span class="inline-formula">−</span>7&thinsp;%, <span class="inline-formula">−</span>7&thinsp;% (<span class="inline-formula">−</span>3&thinsp;% to <span class="inline-formula">−</span>11&thinsp;%), and <span class="inline-formula">−</span>13&thinsp;%. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> persist for the representation of semi-decadal variability in CO<span class="inline-formula"><sub>2</sub></span> fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO<span class="inline-formula"><sub>2</sub></span> flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications<span id="page3272"/> of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at <a href="https://doi.org/10.18160/gcp-2020">https://doi.org/10.18160/gcp-2020</a> (Friedlingstein et al., 2020).</p>
url https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.pdf
work_keys_str_mv AT pfriedlingstein globalcarbonbudget2020
AT pfriedlingstein globalcarbonbudget2020
AT mosullivan globalcarbonbudget2020
AT mwjones globalcarbonbudget2020
AT rmandrew globalcarbonbudget2020
AT jhauck globalcarbonbudget2020
AT aolsen globalcarbonbudget2020
AT aolsen globalcarbonbudget2020
AT gppeters globalcarbonbudget2020
AT wpeters globalcarbonbudget2020
AT wpeters globalcarbonbudget2020
AT jpongratz globalcarbonbudget2020
AT jpongratz globalcarbonbudget2020
AT ssitch globalcarbonbudget2020
AT clequere globalcarbonbudget2020
AT jgcanadell globalcarbonbudget2020
AT pciais globalcarbonbudget2020
AT rbjackson globalcarbonbudget2020
AT salin globalcarbonbudget2020
AT leocaragao globalcarbonbudget2020
AT leocaragao globalcarbonbudget2020
AT aarneth globalcarbonbudget2020
AT varora globalcarbonbudget2020
AT nrbates globalcarbonbudget2020
AT nrbates globalcarbonbudget2020
AT mbecker globalcarbonbudget2020
AT mbecker globalcarbonbudget2020
AT abenoitcattin globalcarbonbudget2020
AT hcbittig globalcarbonbudget2020
AT lbopp globalcarbonbudget2020
AT sbultan globalcarbonbudget2020
AT nchandra globalcarbonbudget2020
AT nchandra globalcarbonbudget2020
AT fchevallier globalcarbonbudget2020
AT lpchini globalcarbonbudget2020
AT wevans globalcarbonbudget2020
AT lflorentie globalcarbonbudget2020
AT pmforster globalcarbonbudget2020
AT tgasser globalcarbonbudget2020
AT mgehlen globalcarbonbudget2020
AT dgilfillan globalcarbonbudget2020
AT tgkritzalis globalcarbonbudget2020
AT lgregor globalcarbonbudget2020
AT ngruber globalcarbonbudget2020
AT iharris globalcarbonbudget2020
AT khartung globalcarbonbudget2020
AT khartung globalcarbonbudget2020
AT vhaverd globalcarbonbudget2020
AT rahoughton globalcarbonbudget2020
AT tilyina globalcarbonbudget2020
AT akjain globalcarbonbudget2020
AT ejoetzjer globalcarbonbudget2020
AT kkadono globalcarbonbudget2020
AT ekato globalcarbonbudget2020
AT vkitidis globalcarbonbudget2020
AT jikorsbakken globalcarbonbudget2020
AT plandschutzer globalcarbonbudget2020
AT nlefevre globalcarbonbudget2020
AT alenton globalcarbonbudget2020
AT slienert globalcarbonbudget2020
AT zliu globalcarbonbudget2020
AT dlombardozzi globalcarbonbudget2020
AT gmarland globalcarbonbudget2020
AT gmarland globalcarbonbudget2020
AT nmetzl globalcarbonbudget2020
AT drmunro globalcarbonbudget2020
AT drmunro globalcarbonbudget2020
AT jemsnabel globalcarbonbudget2020
AT sinakaoka globalcarbonbudget2020
AT yniwa globalcarbonbudget2020
AT yniwa globalcarbonbudget2020
AT kobrien globalcarbonbudget2020
AT kobrien globalcarbonbudget2020
AT tono globalcarbonbudget2020
AT pipalmer globalcarbonbudget2020
AT pipalmer globalcarbonbudget2020
AT dpierrot globalcarbonbudget2020
AT bpoulter globalcarbonbudget2020
AT lresplandy globalcarbonbudget2020
AT erobertson globalcarbonbudget2020
AT crodenbeck globalcarbonbudget2020
AT jschwinger globalcarbonbudget2020
AT jschwinger globalcarbonbudget2020
AT rseferian globalcarbonbudget2020
AT iskjelvan globalcarbonbudget2020
AT iskjelvan globalcarbonbudget2020
AT ajpsmith globalcarbonbudget2020
AT ajsutton globalcarbonbudget2020
AT ttanhua globalcarbonbudget2020
AT pptans globalcarbonbudget2020
AT htian globalcarbonbudget2020
AT btilbrook globalcarbonbudget2020
AT btilbrook globalcarbonbudget2020
AT gvanderwerf globalcarbonbudget2020
AT nvuichard globalcarbonbudget2020
AT apwalker globalcarbonbudget2020
AT rwanninkhof globalcarbonbudget2020
AT ajwatson globalcarbonbudget2020
AT dwillis globalcarbonbudget2020
AT ajwiltshire globalcarbonbudget2020
AT wyuan globalcarbonbudget2020
AT xyue globalcarbonbudget2020
AT szaehle globalcarbonbudget2020
_version_ 1724387248189734912
spelling doaj-1da6f41a610b478ea6effb2c5d021e452020-12-10T23:55:23ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-12-01123269334010.5194/essd-12-3269-2020Global Carbon Budget 2020P. Friedlingstein0P. Friedlingstein1M. O'Sullivan2M. W. Jones3R. M. Andrew4J. Hauck5A. Olsen6A. Olsen7G. P. Peters8W. Peters9W. Peters10J. Pongratz11J. Pongratz12S. Sitch13C. Le Quéré14J. G. Canadell15P. Ciais16R. B. Jackson17S. Alin18L. E. O. C. Aragão19L. E. O. C. Aragão20A. Arneth21V. Arora22N. R. Bates23N. R. Bates24M. Becker25M. Becker26A. Benoit-Cattin27H. C. Bittig28L. Bopp29S. Bultan30N. Chandra31N. Chandra32F. Chevallier33L. P. Chini34W. Evans35L. Florentie36P. M. Forster37T. Gasser38M. Gehlen39D. Gilfillan40T. Gkritzalis41L. Gregor42N. Gruber43I. Harris44K. Hartung45K. Hartung46V. Haverd47R. A. Houghton48T. Ilyina49A. K. Jain50E. Joetzjer51K. Kadono52E. Kato53V. Kitidis54J. I. Korsbakken55P. Landschützer56N. Lefèvre57A. Lenton58S. Lienert59Z. Liu60D. Lombardozzi61G. Marland62G. Marland63N. Metzl64D. R. Munro65D. R. Munro66J. E. M. S. Nabel67S.-I. Nakaoka68Y. Niwa69Y. Niwa70K. O'Brien71K. O'Brien72T. Ono73P. I. Palmer74P. I. Palmer75D. Pierrot76B. Poulter77L. Resplandy78E. Robertson79C. Rödenbeck80J. Schwinger81J. Schwinger82R. Séférian83I. Skjelvan84I. Skjelvan85A. J. P. Smith86A. J. Sutton87T. Tanhua88P. P. Tans89H. Tian90B. Tilbrook91B. Tilbrook92G. van der Werf93N. Vuichard94A. P. Walker95R. Wanninkhof96A. J. Watson97D. Willis98A. J. Wiltshire99W. Yuan100X. Yue101S. Zaehle102College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UKLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Département de Géosciences, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, FranceLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Département de Géosciences, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, FranceTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKCICERO Center for International Climate Research, Oslo 0349, NorwayAlfred-Wegener-Institut Helmholtz-Zentum für Polar- und Meeresforschung, Postfach 120161, 27515 Bremerhaven, GermanyGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayCICERO Center for International Climate Research, Oslo 0349, NorwayWageningen University, Environmental Sciences Group, P.O. Box 47, 6700 AA, Wageningen, the NetherlandsUniversity of Groningen, Centre for Isotope Research, 9747 AG, Groningen, the NetherlandsLudwig-Maximilians-Universität Munich, Luisenstr. 37, 80333 München, GermanyMax Planck Institute for Meteorology, 20146 Hamburg, GermanyCollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKCSIRO Oceans and Atmosphere, Canberra, ACT 2101, AustraliaLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceDepartment of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305–2210, USANational Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USACollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKRemote Sensing Division, National Institute for Space Research, São José dos Campos, BrazilKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467 Garmisch-Partenkirchen, GermanyCanadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, CanadaBermuda Institute of Ocean Sciences (BIOS), 17 Biological Lane, St. Georges, GE01, BermudaDepartment of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UKGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayMarine and Freshwater Research Institute, Fornubudir 5, 220 Hafnarfjordur, IcelandLeibniz Institute for Baltic Sea Research Warnemuende (IOW), Seestrasse 15, 18119 Rostock, GermanyLaboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace, CNRS, Ecole Normale Supérieure/Université PSL, Sorbonne Université, Ecole Polytechnique, Paris, FranceLudwig-Maximilians-Universität Munich, Luisenstr. 37, 80333 München, GermanyJapan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236-0001, JapanCenter for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAHakai Institute, Heriot Bay, BC, CanadaWageningen University, Environmental Sciences Group, P.O. Box 47, 6700 AA, Wageningen, the NetherlandsPriestley International Centre for Climate, University of Leeds, Leeds LS2 9JT, UKInternational Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 2361 Laxenburg, AustriaLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceResearch Institute for Environment, Energy, and Economics, Appalachian State University, Boone, NC 28608, USAFlanders Marine Institute (VLIZ), InnovOceanSite, Wandelaarkaai 7, 8400 Ostend, BelgiumEnvironmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate Systems Modeling (C2SM), Zurich, SwitzerlandEnvironmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate Systems Modeling (C2SM), Zurich, SwitzerlandNCAS-Climate, Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKLudwig-Maximilians-Universität Munich, Luisenstr. 37, 80333 München, Germanynow at: Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyCSIRO Oceans and Atmosphere, Canberra, ACT 2101, AustraliaWoods Hole Research Center (WHRC), Falmouth, MA 02540, USAMax Planck Institute for Meteorology, 20146 Hamburg, GermanyDepartment of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USACNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceJapan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-Ku, Tokyo 100-8122, JapanInstitute of Applied Energy (IAE), Minato-ku, Tokyo 105-0003, JapanPlymouth Marine Laboratory (PML), Plymouth, PL13DH, United KingdomCICERO Center for International Climate Research, Oslo 0349, NorwayMax Planck Institute for Meteorology, 20146 Hamburg, GermanyLOCEAN/IPSL laboratory, Sorbonne Université, CNRS/IRD/MNHN, Paris, FranceCSIRO Oceans and Atmosphere, Hobart, TAS, AustraliaClimate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, SwitzerlandDepartment of Earth System Science, Tsinghua University, Beijing 100084, ChinaNational Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO 80305, USAResearch Institute for Environment, Energy, and Economics, Appalachian State University, Boone, NC 28608, USADepartment of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28608-2067, USALOCEAN/IPSL laboratory, Sorbonne Université, CNRS/IRD/MNHN, Paris, FranceCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80305, USANational Oceanic and Atmospheric Administration/Global Monitoring Laboratory (NOAA/GML), Boulder, CO 80305, USAMax Planck Institute for Meteorology, 20146 Hamburg, GermanyCenter for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanCenter for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanMeteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052 JapanNational Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USACooperative Institute for Climate, Ocean and Ecosystem Studies (CICOES), University of Washington, Seattle, WA 98105, USAJapan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-Ku, Yokohama 236-8648, JapanNational Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UKSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UKNational Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USANASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USAPrinceton University, Department of Geosciences and Princeton Environmental Institute, Princeton, NJ 08544, USAMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKMax Planck Institute for Biogeochemistry, P.O. Box 600164, Hans-Knöll-Str. 10, 07745 Jena, GermanyBjerknes Centre for Climate Research, Bergen, NorwayNORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, NorwayCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceBjerknes Centre for Climate Research, Bergen, NorwayNORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, NorwayTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKNational Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USAGEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, GermanyNational Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA ESRL), Boulder, CO 80305, USASchool of Forestry and Wildlife Sciences, Auburn University, 602 Ducan Drive, Auburn, AL 36849, USACSIRO Oceans and Atmosphere, Hobart, TAS, AustraliaAustralian Antarctic Partnership Program, University of Tasmania, Hobart, AustraliaFaculty of Science, Vrije Universiteit, Amsterdam, the NetherlandsLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceClimate Change Science Institute and Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USANational Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USACollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKUniversity of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKSchool of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Sun Yat-sen University, Zhuhai, Guangdong 510245, ChinaJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, ChinaMax Planck Institute for Biogeochemistry, P.O. Box 600164, Hans-Knöll-Str. 10, 07745 Jena, Germany<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO<span class="inline-formula"><sub>2</sub></span> emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy statistics and cement production data, while emissions from land-use change (<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration is measured directly and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual changes in concentration. The ocean CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) and terrestrial CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as <span class="inline-formula">±1<i>σ</i></span>. For the last decade available (2010–2019), <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was 9.6&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> when the cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.6&thinsp;<span class="inline-formula">±</span>&thinsp;0.7&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>. For the same decade, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.1&thinsp;<span class="inline-formula">±</span>&thinsp;0.02&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (2.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.01&thinsp;ppm&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> 2.5&thinsp;<span class="inline-formula">±</span>&thinsp; 0.6&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> 3.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.9&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, with a budget imbalance <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">−</span>0.1&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was only about 0.1&thinsp;% with fossil emissions increasing to 9.9&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.7&thinsp;<span class="inline-formula">±</span>&thinsp;0.5&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> when cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.8&thinsp;<span class="inline-formula">±</span>&thinsp;0.7&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, for total anthropogenic CO<span class="inline-formula"><sub>2</sub></span> emissions of 11.5&thinsp;<span class="inline-formula">±</span>&thinsp;0.9&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (42.2&thinsp;<span class="inline-formula">±</span>&thinsp;3.3&thinsp;GtCO<span class="inline-formula"><sub>2</sub></span>). Also for 2019, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.4&thinsp;<span class="inline-formula">±</span>&thinsp;0.2&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> (2.5&thinsp;<span class="inline-formula">±</span>&thinsp;0.1&thinsp;ppm&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> was 2.6&thinsp;<span class="inline-formula">±</span>&thinsp;0.6&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> was 3.1&thinsp;<span class="inline-formula">±</span>&thinsp;1.2&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of 0.3&thinsp;GtC. The global atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration reached 409.85&thinsp;<span class="inline-formula">±</span>&thinsp;0.1&thinsp;ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> relative to 2019 of about <span class="inline-formula">−</span>7&thinsp;% (median estimate) based on individual estimates from four studies of <span class="inline-formula">−</span>6&thinsp;%, <span class="inline-formula">−</span>7&thinsp;%, <span class="inline-formula">−</span>7&thinsp;% (<span class="inline-formula">−</span>3&thinsp;% to <span class="inline-formula">−</span>11&thinsp;%), and <span class="inline-formula">−</span>13&thinsp;%. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1&thinsp;GtC&thinsp;yr<span class="inline-formula"><sup>−1</sup></span> persist for the representation of semi-decadal variability in CO<span class="inline-formula"><sub>2</sub></span> fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO<span class="inline-formula"><sub>2</sub></span> flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications<span id="page3272"/> of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at <a href="https://doi.org/10.18160/gcp-2020">https://doi.org/10.18160/gcp-2020</a> (Friedlingstein et al., 2020).</p>https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.pdf