Global Carbon Budget 2020
<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is import...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-12-01
|
Series: | Earth System Science Data |
Online Access: | https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.pdf |
id |
doaj-1da6f41a610b478ea6effb2c5d021e45 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
P. Friedlingstein P. Friedlingstein M. O'Sullivan M. W. Jones R. M. Andrew J. Hauck A. Olsen A. Olsen G. P. Peters W. Peters W. Peters J. Pongratz J. Pongratz S. Sitch C. Le Quéré J. G. Canadell P. Ciais R. B. Jackson S. Alin L. E. O. C. Aragão L. E. O. C. Aragão A. Arneth V. Arora N. R. Bates N. R. Bates M. Becker M. Becker A. Benoit-Cattin H. C. Bittig L. Bopp S. Bultan N. Chandra N. Chandra F. Chevallier L. P. Chini W. Evans L. Florentie P. M. Forster T. Gasser M. Gehlen D. Gilfillan T. Gkritzalis L. Gregor N. Gruber I. Harris K. Hartung K. Hartung V. Haverd R. A. Houghton T. Ilyina A. K. Jain E. Joetzjer K. Kadono E. Kato V. Kitidis J. I. Korsbakken P. Landschützer N. Lefèvre A. Lenton S. Lienert Z. Liu D. Lombardozzi G. Marland G. Marland N. Metzl D. R. Munro D. R. Munro J. E. M. S. Nabel S.-I. Nakaoka Y. Niwa Y. Niwa K. O'Brien K. O'Brien T. Ono P. I. Palmer P. I. Palmer D. Pierrot B. Poulter L. Resplandy E. Robertson C. Rödenbeck J. Schwinger J. Schwinger R. Séférian I. Skjelvan I. Skjelvan A. J. P. Smith A. J. Sutton T. Tanhua P. P. Tans H. Tian B. Tilbrook B. Tilbrook G. van der Werf N. Vuichard A. P. Walker R. Wanninkhof A. J. Watson D. Willis A. J. Wiltshire W. Yuan X. Yue S. Zaehle |
spellingShingle |
P. Friedlingstein P. Friedlingstein M. O'Sullivan M. W. Jones R. M. Andrew J. Hauck A. Olsen A. Olsen G. P. Peters W. Peters W. Peters J. Pongratz J. Pongratz S. Sitch C. Le Quéré J. G. Canadell P. Ciais R. B. Jackson S. Alin L. E. O. C. Aragão L. E. O. C. Aragão A. Arneth V. Arora N. R. Bates N. R. Bates M. Becker M. Becker A. Benoit-Cattin H. C. Bittig L. Bopp S. Bultan N. Chandra N. Chandra F. Chevallier L. P. Chini W. Evans L. Florentie P. M. Forster T. Gasser M. Gehlen D. Gilfillan T. Gkritzalis L. Gregor N. Gruber I. Harris K. Hartung K. Hartung V. Haverd R. A. Houghton T. Ilyina A. K. Jain E. Joetzjer K. Kadono E. Kato V. Kitidis J. I. Korsbakken P. Landschützer N. Lefèvre A. Lenton S. Lienert Z. Liu D. Lombardozzi G. Marland G. Marland N. Metzl D. R. Munro D. R. Munro J. E. M. S. Nabel S.-I. Nakaoka Y. Niwa Y. Niwa K. O'Brien K. O'Brien T. Ono P. I. Palmer P. I. Palmer D. Pierrot B. Poulter L. Resplandy E. Robertson C. Rödenbeck J. Schwinger J. Schwinger R. Séférian I. Skjelvan I. Skjelvan A. J. P. Smith A. J. Sutton T. Tanhua P. P. Tans H. Tian B. Tilbrook B. Tilbrook G. van der Werf N. Vuichard A. P. Walker R. Wanninkhof A. J. Watson D. Willis A. J. Wiltshire W. Yuan X. Yue S. Zaehle Global Carbon Budget 2020 Earth System Science Data |
author_facet |
P. Friedlingstein P. Friedlingstein M. O'Sullivan M. W. Jones R. M. Andrew J. Hauck A. Olsen A. Olsen G. P. Peters W. Peters W. Peters J. Pongratz J. Pongratz S. Sitch C. Le Quéré J. G. Canadell P. Ciais R. B. Jackson S. Alin L. E. O. C. Aragão L. E. O. C. Aragão A. Arneth V. Arora N. R. Bates N. R. Bates M. Becker M. Becker A. Benoit-Cattin H. C. Bittig L. Bopp S. Bultan N. Chandra N. Chandra F. Chevallier L. P. Chini W. Evans L. Florentie P. M. Forster T. Gasser M. Gehlen D. Gilfillan T. Gkritzalis L. Gregor N. Gruber I. Harris K. Hartung K. Hartung V. Haverd R. A. Houghton T. Ilyina A. K. Jain E. Joetzjer K. Kadono E. Kato V. Kitidis J. I. Korsbakken P. Landschützer N. Lefèvre A. Lenton S. Lienert Z. Liu D. Lombardozzi G. Marland G. Marland N. Metzl D. R. Munro D. R. Munro J. E. M. S. Nabel S.-I. Nakaoka Y. Niwa Y. Niwa K. O'Brien K. O'Brien T. Ono P. I. Palmer P. I. Palmer D. Pierrot B. Poulter L. Resplandy E. Robertson C. Rödenbeck J. Schwinger J. Schwinger R. Séférian I. Skjelvan I. Skjelvan A. J. P. Smith A. J. Sutton T. Tanhua P. P. Tans H. Tian B. Tilbrook B. Tilbrook G. van der Werf N. Vuichard A. P. Walker R. Wanninkhof A. J. Watson D. Willis A. J. Wiltshire W. Yuan X. Yue S. Zaehle |
author_sort |
P. Friedlingstein |
title |
Global Carbon Budget 2020 |
title_short |
Global Carbon Budget 2020 |
title_full |
Global Carbon Budget 2020 |
title_fullStr |
Global Carbon Budget 2020 |
title_full_unstemmed |
Global Carbon Budget 2020 |
title_sort |
global carbon budget 2020 |
publisher |
Copernicus Publications |
series |
Earth System Science Data |
issn |
1866-3508 1866-3516 |
publishDate |
2020-12-01 |
description |
<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and
their redistribution among the atmosphere, ocean, and terrestrial biosphere
in a changing climate – the “global carbon budget” – is important to
better understand the global carbon cycle, support the development of
climate policies, and project future climate change. Here we describe and
synthesize data sets and methodology to quantify the five major components
of the global carbon budget and their uncertainties. Fossil CO<span class="inline-formula"><sub>2</sub></span>
emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy statistics and cement production
data, while emissions from land-use change (<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly
deforestation, are based on land use and land-use change data and
bookkeeping models. Atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration is measured directly
and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual changes in
concentration. The ocean CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) and terrestrial
CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>) are estimated with global process models
constrained by observations. The resulting carbon budget imbalance
(<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the
estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a
measure of imperfect data and understanding of the contemporary carbon
cycle. All uncertainties are reported as <span class="inline-formula">±1<i>σ</i></span>. For the last
decade available (2010–2019), <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was 9.6 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.4 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> when the cement carbonation sink is included), and
<span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.6 <span class="inline-formula">±</span> 0.7 GtC yr<span class="inline-formula"><sup>−1</sup></span>. For the same decade, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.1 <span class="inline-formula">±</span> 0.02 GtC yr<span class="inline-formula"><sup>−1</sup></span> (2.4 <span class="inline-formula">±</span> 0.01 ppm yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> 2.5 <span class="inline-formula">±</span>  0.6 GtC yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> 3.4 <span class="inline-formula">±</span> 0.9 GtC yr<span class="inline-formula"><sup>−1</sup></span>, with a budget
imbalance <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">−</span>0.1 GtC yr<span class="inline-formula"><sup>−1</sup></span> indicating a near balance between
estimated sources and sinks over the last decade. For the year 2019 alone, the
growth in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was only about 0.1 % with fossil emissions increasing
to 9.9 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.7 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> when cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.8 <span class="inline-formula">±</span> 0.7 GtC yr<span class="inline-formula"><sup>−1</sup></span>, for total anthropogenic CO<span class="inline-formula"><sub>2</sub></span> emissions of 11.5 <span class="inline-formula">±</span> 0.9 GtC yr<span class="inline-formula"><sup>−1</sup></span> (42.2 <span class="inline-formula">±</span> 3.3 GtCO<span class="inline-formula"><sub>2</sub></span>). Also for 2019, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was
5.4 <span class="inline-formula">±</span> 0.2 GtC yr<span class="inline-formula"><sup>−1</sup></span> (2.5 <span class="inline-formula">±</span> 0.1 ppm yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>
was 2.6 <span class="inline-formula">±</span> 0.6 GtC yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> was 3.1 <span class="inline-formula">±</span> 1.2 GtC yr<span class="inline-formula"><sup>−1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of 0.3 GtC. The global atmospheric CO<span class="inline-formula"><sub>2</sub></span>
concentration reached 409.85 <span class="inline-formula">±</span> 0.1 ppm averaged over 2019. Preliminary
data for 2020, accounting for the COVID-19-induced changes in emissions,
suggest a decrease in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> relative to 2019 of about <span class="inline-formula">−</span>7 % (median
estimate) based on individual estimates from four studies of <span class="inline-formula">−</span>6 %, <span class="inline-formula">−</span>7 %,
<span class="inline-formula">−</span>7 % (<span class="inline-formula">−</span>3 % to <span class="inline-formula">−</span>11 %), and <span class="inline-formula">−</span>13 %. Overall, the mean and trend in the
components of the global carbon budget are consistently estimated over the
period 1959–2019, but discrepancies of up to 1 GtC yr<span class="inline-formula"><sup>−1</sup></span> persist for the
representation of semi-decadal variability in CO<span class="inline-formula"><sub>2</sub></span> fluxes. Comparison of
estimates from diverse approaches and observations shows (1) no consensus
in the mean and trend in land-use change emissions over the last decade, (2)
a persistent low agreement between the different methods on the magnitude of
the land CO<span class="inline-formula"><sub>2</sub></span> flux in the northern extra-tropics, and (3) an apparent
discrepancy between the different methods for the ocean sink outside the
tropics, particularly in the Southern Ocean. This living data update
documents changes in the methods and data sets used in this new global
carbon budget and the progress in understanding of the global carbon cycle
compared with previous publications<span id="page3272"/> of this data set (Friedlingstein et al.,
2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014,
2013). The data presented in this work are available at <a href="https://doi.org/10.18160/gcp-2020">https://doi.org/10.18160/gcp-2020</a> (Friedlingstein et al., 2020).</p> |
url |
https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.pdf |
work_keys_str_mv |
AT pfriedlingstein globalcarbonbudget2020 AT pfriedlingstein globalcarbonbudget2020 AT mosullivan globalcarbonbudget2020 AT mwjones globalcarbonbudget2020 AT rmandrew globalcarbonbudget2020 AT jhauck globalcarbonbudget2020 AT aolsen globalcarbonbudget2020 AT aolsen globalcarbonbudget2020 AT gppeters globalcarbonbudget2020 AT wpeters globalcarbonbudget2020 AT wpeters globalcarbonbudget2020 AT jpongratz globalcarbonbudget2020 AT jpongratz globalcarbonbudget2020 AT ssitch globalcarbonbudget2020 AT clequere globalcarbonbudget2020 AT jgcanadell globalcarbonbudget2020 AT pciais globalcarbonbudget2020 AT rbjackson globalcarbonbudget2020 AT salin globalcarbonbudget2020 AT leocaragao globalcarbonbudget2020 AT leocaragao globalcarbonbudget2020 AT aarneth globalcarbonbudget2020 AT varora globalcarbonbudget2020 AT nrbates globalcarbonbudget2020 AT nrbates globalcarbonbudget2020 AT mbecker globalcarbonbudget2020 AT mbecker globalcarbonbudget2020 AT abenoitcattin globalcarbonbudget2020 AT hcbittig globalcarbonbudget2020 AT lbopp globalcarbonbudget2020 AT sbultan globalcarbonbudget2020 AT nchandra globalcarbonbudget2020 AT nchandra globalcarbonbudget2020 AT fchevallier globalcarbonbudget2020 AT lpchini globalcarbonbudget2020 AT wevans globalcarbonbudget2020 AT lflorentie globalcarbonbudget2020 AT pmforster globalcarbonbudget2020 AT tgasser globalcarbonbudget2020 AT mgehlen globalcarbonbudget2020 AT dgilfillan globalcarbonbudget2020 AT tgkritzalis globalcarbonbudget2020 AT lgregor globalcarbonbudget2020 AT ngruber globalcarbonbudget2020 AT iharris globalcarbonbudget2020 AT khartung globalcarbonbudget2020 AT khartung globalcarbonbudget2020 AT vhaverd globalcarbonbudget2020 AT rahoughton globalcarbonbudget2020 AT tilyina globalcarbonbudget2020 AT akjain globalcarbonbudget2020 AT ejoetzjer globalcarbonbudget2020 AT kkadono globalcarbonbudget2020 AT ekato globalcarbonbudget2020 AT vkitidis globalcarbonbudget2020 AT jikorsbakken globalcarbonbudget2020 AT plandschutzer globalcarbonbudget2020 AT nlefevre globalcarbonbudget2020 AT alenton globalcarbonbudget2020 AT slienert globalcarbonbudget2020 AT zliu globalcarbonbudget2020 AT dlombardozzi globalcarbonbudget2020 AT gmarland globalcarbonbudget2020 AT gmarland globalcarbonbudget2020 AT nmetzl globalcarbonbudget2020 AT drmunro globalcarbonbudget2020 AT drmunro globalcarbonbudget2020 AT jemsnabel globalcarbonbudget2020 AT sinakaoka globalcarbonbudget2020 AT yniwa globalcarbonbudget2020 AT yniwa globalcarbonbudget2020 AT kobrien globalcarbonbudget2020 AT kobrien globalcarbonbudget2020 AT tono globalcarbonbudget2020 AT pipalmer globalcarbonbudget2020 AT pipalmer globalcarbonbudget2020 AT dpierrot globalcarbonbudget2020 AT bpoulter globalcarbonbudget2020 AT lresplandy globalcarbonbudget2020 AT erobertson globalcarbonbudget2020 AT crodenbeck globalcarbonbudget2020 AT jschwinger globalcarbonbudget2020 AT jschwinger globalcarbonbudget2020 AT rseferian globalcarbonbudget2020 AT iskjelvan globalcarbonbudget2020 AT iskjelvan globalcarbonbudget2020 AT ajpsmith globalcarbonbudget2020 AT ajsutton globalcarbonbudget2020 AT ttanhua globalcarbonbudget2020 AT pptans globalcarbonbudget2020 AT htian globalcarbonbudget2020 AT btilbrook globalcarbonbudget2020 AT btilbrook globalcarbonbudget2020 AT gvanderwerf globalcarbonbudget2020 AT nvuichard globalcarbonbudget2020 AT apwalker globalcarbonbudget2020 AT rwanninkhof globalcarbonbudget2020 AT ajwatson globalcarbonbudget2020 AT dwillis globalcarbonbudget2020 AT ajwiltshire globalcarbonbudget2020 AT wyuan globalcarbonbudget2020 AT xyue globalcarbonbudget2020 AT szaehle globalcarbonbudget2020 |
_version_ |
1724387248189734912 |
spelling |
doaj-1da6f41a610b478ea6effb2c5d021e452020-12-10T23:55:23ZengCopernicus PublicationsEarth System Science Data1866-35081866-35162020-12-01123269334010.5194/essd-12-3269-2020Global Carbon Budget 2020P. Friedlingstein0P. Friedlingstein1M. O'Sullivan2M. W. Jones3R. M. Andrew4J. Hauck5A. Olsen6A. Olsen7G. P. Peters8W. Peters9W. Peters10J. Pongratz11J. Pongratz12S. Sitch13C. Le Quéré14J. G. Canadell15P. Ciais16R. B. Jackson17S. Alin18L. E. O. C. Aragão19L. E. O. C. Aragão20A. Arneth21V. Arora22N. R. Bates23N. R. Bates24M. Becker25M. Becker26A. Benoit-Cattin27H. C. Bittig28L. Bopp29S. Bultan30N. Chandra31N. Chandra32F. Chevallier33L. P. Chini34W. Evans35L. Florentie36P. M. Forster37T. Gasser38M. Gehlen39D. Gilfillan40T. Gkritzalis41L. Gregor42N. Gruber43I. Harris44K. Hartung45K. Hartung46V. Haverd47R. A. Houghton48T. Ilyina49A. K. Jain50E. Joetzjer51K. Kadono52E. Kato53V. Kitidis54J. I. Korsbakken55P. Landschützer56N. Lefèvre57A. Lenton58S. Lienert59Z. Liu60D. Lombardozzi61G. Marland62G. Marland63N. Metzl64D. R. Munro65D. R. Munro66J. E. M. S. Nabel67S.-I. Nakaoka68Y. Niwa69Y. Niwa70K. O'Brien71K. O'Brien72T. Ono73P. I. Palmer74P. I. Palmer75D. Pierrot76B. Poulter77L. Resplandy78E. Robertson79C. Rödenbeck80J. Schwinger81J. Schwinger82R. Séférian83I. Skjelvan84I. Skjelvan85A. J. P. Smith86A. J. Sutton87T. Tanhua88P. P. Tans89H. Tian90B. Tilbrook91B. Tilbrook92G. van der Werf93N. Vuichard94A. P. Walker95R. Wanninkhof96A. J. Watson97D. Willis98A. J. Wiltshire99W. Yuan100X. Yue101S. Zaehle102College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, UKLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Département de Géosciences, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, FranceLaboratoire de Météorologie Dynamique, Institut Pierre-Simon Laplace, CNRS-ENS-UPMC-X, Département de Géosciences, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, FranceTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKCICERO Center for International Climate Research, Oslo 0349, NorwayAlfred-Wegener-Institut Helmholtz-Zentum für Polar- und Meeresforschung, Postfach 120161, 27515 Bremerhaven, GermanyGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayCICERO Center for International Climate Research, Oslo 0349, NorwayWageningen University, Environmental Sciences Group, P.O. Box 47, 6700 AA, Wageningen, the NetherlandsUniversity of Groningen, Centre for Isotope Research, 9747 AG, Groningen, the NetherlandsLudwig-Maximilians-Universität Munich, Luisenstr. 37, 80333 München, GermanyMax Planck Institute for Meteorology, 20146 Hamburg, GermanyCollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKCSIRO Oceans and Atmosphere, Canberra, ACT 2101, AustraliaLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceDepartment of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA 94305–2210, USANational Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USACollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKRemote Sensing Division, National Institute for Space Research, São José dos Campos, BrazilKarlsruhe Institute of Technology, Institute of Meteorology and Climate Research/Atmospheric Environmental Research, 82467 Garmisch-Partenkirchen, GermanyCanadian Centre for Climate Modelling and Analysis, Climate Research Division, Environment and Climate Change Canada, Victoria, BC, CanadaBermuda Institute of Ocean Sciences (BIOS), 17 Biological Lane, St. Georges, GE01, BermudaDepartment of Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UKGeophysical Institute, University of Bergen, Bergen, NorwayBjerknes Centre for Climate Research, Bergen, NorwayMarine and Freshwater Research Institute, Fornubudir 5, 220 Hafnarfjordur, IcelandLeibniz Institute for Baltic Sea Research Warnemuende (IOW), Seestrasse 15, 18119 Rostock, GermanyLaboratoire de Météorologie Dynamique/Institut Pierre-Simon Laplace, CNRS, Ecole Normale Supérieure/Université PSL, Sorbonne Université, Ecole Polytechnique, Paris, FranceLudwig-Maximilians-Universität Munich, Luisenstr. 37, 80333 München, GermanyJapan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, 236-0001, JapanCenter for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceDepartment of Geographical Sciences, University of Maryland, College Park, MD 20742, USAHakai Institute, Heriot Bay, BC, CanadaWageningen University, Environmental Sciences Group, P.O. Box 47, 6700 AA, Wageningen, the NetherlandsPriestley International Centre for Climate, University of Leeds, Leeds LS2 9JT, UKInternational Institute for Applied Systems Analysis (IIASA), Schlossplatz 1 2361 Laxenburg, AustriaLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceResearch Institute for Environment, Energy, and Economics, Appalachian State University, Boone, NC 28608, USAFlanders Marine Institute (VLIZ), InnovOceanSite, Wandelaarkaai 7, 8400 Ostend, BelgiumEnvironmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate Systems Modeling (C2SM), Zurich, SwitzerlandEnvironmental Physics Group, ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics and Center for Climate Systems Modeling (C2SM), Zurich, SwitzerlandNCAS-Climate, Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKLudwig-Maximilians-Universität Munich, Luisenstr. 37, 80333 München, Germanynow at: Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, GermanyCSIRO Oceans and Atmosphere, Canberra, ACT 2101, AustraliaWoods Hole Research Center (WHRC), Falmouth, MA 02540, USAMax Planck Institute for Meteorology, 20146 Hamburg, GermanyDepartment of Atmospheric Sciences, University of Illinois, Urbana, IL 61821, USACNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceJapan Meteorological Agency, 1-3-4 Otemachi, Chiyoda-Ku, Tokyo 100-8122, JapanInstitute of Applied Energy (IAE), Minato-ku, Tokyo 105-0003, JapanPlymouth Marine Laboratory (PML), Plymouth, PL13DH, United KingdomCICERO Center for International Climate Research, Oslo 0349, NorwayMax Planck Institute for Meteorology, 20146 Hamburg, GermanyLOCEAN/IPSL laboratory, Sorbonne Université, CNRS/IRD/MNHN, Paris, FranceCSIRO Oceans and Atmosphere, Hobart, TAS, AustraliaClimate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, Bern, SwitzerlandDepartment of Earth System Science, Tsinghua University, Beijing 100084, ChinaNational Center for Atmospheric Research, Climate and Global Dynamics, Terrestrial Sciences Section, Boulder, CO 80305, USAResearch Institute for Environment, Energy, and Economics, Appalachian State University, Boone, NC 28608, USADepartment of Geological and Environmental Sciences, Appalachian State University, Boone, NC 28608-2067, USALOCEAN/IPSL laboratory, Sorbonne Université, CNRS/IRD/MNHN, Paris, FranceCooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80305, USANational Oceanic and Atmospheric Administration/Global Monitoring Laboratory (NOAA/GML), Boulder, CO 80305, USAMax Planck Institute for Meteorology, 20146 Hamburg, GermanyCenter for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanCenter for Global Environmental Research, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, JapanMeteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki, 305-0052 JapanNational Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USACooperative Institute for Climate, Ocean and Ecosystem Studies (CICOES), University of Washington, Seattle, WA 98105, USAJapan Fisheries Research and Education Agency, 2-12-4 Fukuura, Kanazawa-Ku, Yokohama 236-8648, JapanNational Centre for Earth Observation, University of Edinburgh, Edinburgh EH9 3FF, UKSchool of GeoSciences, University of Edinburgh, Edinburgh EH9 3FF, UKNational Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USANASA Goddard Space Flight Center, Biospheric Sciences Laboratory, Greenbelt, MD 20771, USAPrinceton University, Department of Geosciences and Princeton Environmental Institute, Princeton, NJ 08544, USAMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKMax Planck Institute for Biogeochemistry, P.O. Box 600164, Hans-Knöll-Str. 10, 07745 Jena, GermanyBjerknes Centre for Climate Research, Bergen, NorwayNORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, NorwayCNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, FranceBjerknes Centre for Climate Research, Bergen, NorwayNORCE Norwegian Research Centre, Jahnebakken 5, 5007 Bergen, NorwayTyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKNational Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory (NOAA/PMEL), 7600 Sand Point Way NE, Seattle, WA 98115, USAGEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, GermanyNational Oceanic and Atmospheric Administration, Earth System Research Laboratory (NOAA ESRL), Boulder, CO 80305, USASchool of Forestry and Wildlife Sciences, Auburn University, 602 Ducan Drive, Auburn, AL 36849, USACSIRO Oceans and Atmosphere, Hobart, TAS, AustraliaAustralian Antarctic Partnership Program, University of Tasmania, Hobart, AustraliaFaculty of Science, Vrije Universiteit, Amsterdam, the NetherlandsLaboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91198 Gif-sur-Yvette, FranceClimate Change Science Institute and Environmental Sciences Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USANational Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory (NOAA/AOML), Miami, FL 33149, USACollege of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UKUniversity of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UKMet Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UKSchool of Atmospheric Sciences, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Zhuhai Key Laboratory of Dynamics Urban Climate and Ecology, Sun Yat-sen University, Zhuhai, Guangdong 510245, ChinaJiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology (NUIST), Nanjing 210044, ChinaMax Planck Institute for Biogeochemistry, P.O. Box 600164, Hans-Knöll-Str. 10, 07745 Jena, Germany<p>Accurate assessment of anthropogenic carbon dioxide (CO<span class="inline-formula"><sub>2</sub></span>) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO<span class="inline-formula"><sub>2</sub></span> emissions (<span class="inline-formula"><i>E</i><sub>FOS</sub></span>) are based on energy statistics and cement production data, while emissions from land-use change (<span class="inline-formula"><i>E</i><sub>LUC</sub></span>), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration is measured directly and its growth rate (<span class="inline-formula"><i>G</i><sub>ATM</sub></span>) is computed from the annual changes in concentration. The ocean CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>OCEAN</sub></span>) and terrestrial CO<span class="inline-formula"><sub>2</sub></span> sink (<span class="inline-formula"><i>S</i><sub>LAND</sub></span>) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (<span class="inline-formula"><i>B</i><sub>IM</sub></span>), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as <span class="inline-formula">±1<i>σ</i></span>. For the last decade available (2010–2019), <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was 9.6 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.4 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> when the cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.6 <span class="inline-formula">±</span> 0.7 GtC yr<span class="inline-formula"><sup>−1</sup></span>. For the same decade, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.1 <span class="inline-formula">±</span> 0.02 GtC yr<span class="inline-formula"><sup>−1</sup></span> (2.4 <span class="inline-formula">±</span> 0.01 ppm yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> 2.5 <span class="inline-formula">±</span>  0.6 GtC yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> 3.4 <span class="inline-formula">±</span> 0.9 GtC yr<span class="inline-formula"><sup>−1</sup></span>, with a budget imbalance <span class="inline-formula"><i>B</i><sub>IM</sub></span> of <span class="inline-formula">−</span>0.1 GtC yr<span class="inline-formula"><sup>−1</sup></span> indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> was only about 0.1 % with fossil emissions increasing to 9.9 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> excluding the cement carbonation sink (9.7 <span class="inline-formula">±</span> 0.5 GtC yr<span class="inline-formula"><sup>−1</sup></span> when cement carbonation sink is included), and <span class="inline-formula"><i>E</i><sub>LUC</sub></span> was 1.8 <span class="inline-formula">±</span> 0.7 GtC yr<span class="inline-formula"><sup>−1</sup></span>, for total anthropogenic CO<span class="inline-formula"><sub>2</sub></span> emissions of 11.5 <span class="inline-formula">±</span> 0.9 GtC yr<span class="inline-formula"><sup>−1</sup></span> (42.2 <span class="inline-formula">±</span> 3.3 GtCO<span class="inline-formula"><sub>2</sub></span>). Also for 2019, <span class="inline-formula"><i>G</i><sub>ATM</sub></span> was 5.4 <span class="inline-formula">±</span> 0.2 GtC yr<span class="inline-formula"><sup>−1</sup></span> (2.5 <span class="inline-formula">±</span> 0.1 ppm yr<span class="inline-formula"><sup>−1</sup></span>), <span class="inline-formula"><i>S</i><sub>OCEAN</sub></span> was 2.6 <span class="inline-formula">±</span> 0.6 GtC yr<span class="inline-formula"><sup>−1</sup></span>, and <span class="inline-formula"><i>S</i><sub>LAND</sub></span> was 3.1 <span class="inline-formula">±</span> 1.2 GtC yr<span class="inline-formula"><sup>−1</sup></span>, with a <span class="inline-formula"><i>B</i><sub>IM</sub></span> of 0.3 GtC. The global atmospheric CO<span class="inline-formula"><sub>2</sub></span> concentration reached 409.85 <span class="inline-formula">±</span> 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in <span class="inline-formula"><i>E</i><sub>FOS</sub></span> relative to 2019 of about <span class="inline-formula">−</span>7 % (median estimate) based on individual estimates from four studies of <span class="inline-formula">−</span>6 %, <span class="inline-formula">−</span>7 %, <span class="inline-formula">−</span>7 % (<span class="inline-formula">−</span>3 % to <span class="inline-formula">−</span>11 %), and <span class="inline-formula">−</span>13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr<span class="inline-formula"><sup>−1</sup></span> persist for the representation of semi-decadal variability in CO<span class="inline-formula"><sub>2</sub></span> fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO<span class="inline-formula"><sub>2</sub></span> flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications<span id="page3272"/> of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at <a href="https://doi.org/10.18160/gcp-2020">https://doi.org/10.18160/gcp-2020</a> (Friedlingstein et al., 2020).</p>https://essd.copernicus.org/articles/12/3269/2020/essd-12-3269-2020.pdf |