DEVELOPMENT OF TECHNOLOGY FOR WHEAT PROCESSING INTO ALCOHOL AND PROTEIN PRODUCT

In the alcohol industry it is important to create non-waste technology for grain processing into alcohol. The aim of research was the development of technology for wheat processing into ethanol and protein product. We studied the process of enzymatic hydrolysis of starch with glucoamylase of Glucog...

Full description

Bibliographic Details
Main Authors: T. I. Romanyuk, G. V. Agafonov, N. N. Frolova
Format: Article
Language:Russian
Published: Voronezh state university of engineering technologies 2015-01-01
Series:Vestnik Voronežskogo Gosudarstvennogo Universiteta Inženernyh Tehnologij
Subjects:
Online Access:https://www.vestnik-vsuet.ru/vguit/article/view/281
Description
Summary:In the alcohol industry it is important to create non-waste technology for grain processing into alcohol. The aim of research was the development of technology for wheat processing into ethanol and protein product. We studied the process of enzymatic hydrolysis of starch with glucoamylase of Glucogam preparation. We determined the optimal dosage of the enzyme 8 units. GlA/g of starch, and the temperature of 55°C. In the study of protein hydrolysis by the concomitant to glucoamylase protease of enzyme Glucogam preparation accumulation of amino nitrogen of 4.5 mg / cm 3 in 7 hours of bioconversion takes place. Separation of the resulting saccharified mass was carried out by centrifugation into the filtrate and protein mass. Centrifugation was carried out at a rotational speed of 2500 rev / min for 8 minutes. Protein was dried to 5% moisture content at temperatures not exceeding 35°C, milled, and examined its properties in comparison with native wheat gluten. The resulting product had the following characteristics: the solubility of 10%, water-holding capacity of 1.53 g / g, and fat binding capacity of 1.9 g /g. We investigated the process of fermentation of clarified wort with the dry solids concentration of 14%. We used the yeast Saccharomyces cerevisiae of race XII and Saccharomyces cerevisiae of race IMB Y-5007 in the dose of 120 million cells per 1 cm3 of wort. Optimum composition of mineral salts was determined. For the yeasts of race XII and IMB Y-5007 fertilizing with diammonium phosphate in a dosage of 1.5 g / dm3 is necessary. The alcohol yield when using the yeasts of race IMB Y-5007 was 60.7 dal/ ton of conditional starch, when using yeasts of race XII it accounts 60,6 dal / ton of conditional starch.
ISSN:2226-910X
2310-1202