The recent increase of atmospheric methane from 10 years of ground-based NDACC FTIR observations since 2005
Changes of atmospheric methane total columns (CH<sub>4</sub>) since 2005 have been evaluated using Fourier transform infrared (FTIR) solar observations carried out at 10 ground-based sites, affiliated to the Network for Detection of Atmospheric Composition Change (NDACC). From this, we f...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2017-02-01
|
Series: | Atmospheric Chemistry and Physics |
Online Access: | http://www.atmos-chem-phys.net/17/2255/2017/acp-17-2255-2017.pdf |
Summary: | Changes of atmospheric methane total columns (CH<sub>4</sub>) since 2005 have been
evaluated using Fourier transform infrared (FTIR) solar observations
carried out at 10 ground-based sites, affiliated to the Network for Detection
of Atmospheric Composition Change (NDACC). From this, we find an increase of
atmospheric methane total columns of 0.31 ± 0.03 % year<sup>−1</sup>
(2<i>σ</i> level of uncertainty) for the 2005–2014 period. Comparisons with
in situ methane measurements at both local and global scales show good
agreement. We used the GEOS-Chem chemical transport model tagged simulation, which accounts for the contribution of each emission source and one sink in
the total methane, simulated over 2005–2012. After regridding according to
NDACC vertical layering using a conservative regridding scheme and smoothing
by convolving with respective FTIR seasonal averaging kernels, the GEOS-Chem
simulation shows an increase of atmospheric methane total columns of
0.35 ± 0.03 % year<sup>−1</sup> between 2005 and 2012, which is in
agreement with NDACC measurements over the same time period
(0.30 ± 0.04 % year<sup>−1</sup>, averaged over 10 stations). Analysis
of the GEOS-Chem-tagged simulation allows us to quantify the contribution of
each tracer to the global methane change since 2005. We find that natural
sources such as wetlands and biomass burning contribute to the interannual
variability of methane. However, anthropogenic emissions, such as coal mining,
and gas and oil transport and exploration, which are mainly emitted in the
Northern Hemisphere and act as secondary contributors to the global budget of
methane, have played a major role in the increase of atmospheric methane
observed since 2005. Based on the GEOS-Chem-tagged simulation, we discuss
possible cause(s) for the increase of methane since 2005, which is still
unexplained. |
---|---|
ISSN: | 1680-7316 1680-7324 |