Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients

BackgroundImpairment of visual function is one of the major symptoms of people with multiple sclerosis (pwMS). A multitude of disease effects including inflammation and neurodegeneration lead to structural impairment in the visual system. However, the gold standard of disability quantification, the...

Full description

Bibliographic Details
Main Authors: Sina C. Rosenkranz, Barbara Kaulen, Hanna G. Zimmermann, Ava K. Bittner, Michael Dorr, Jan-Patrick Stellmann
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-02-01
Series:Frontiers in Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnins.2021.591302/full
id doaj-1dbb5bb3d6014bd999a9f479f7f20bad
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Sina C. Rosenkranz
Sina C. Rosenkranz
Barbara Kaulen
Barbara Kaulen
Hanna G. Zimmermann
Hanna G. Zimmermann
Ava K. Bittner
Ava K. Bittner
Michael Dorr
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Jan-Patrick Stellmann
spellingShingle Sina C. Rosenkranz
Sina C. Rosenkranz
Barbara Kaulen
Barbara Kaulen
Hanna G. Zimmermann
Hanna G. Zimmermann
Ava K. Bittner
Ava K. Bittner
Michael Dorr
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients
Frontiers in Neuroscience
qCSF
AULCSF
precision
repeatability
discrimination
multiple sclerosis
author_facet Sina C. Rosenkranz
Sina C. Rosenkranz
Barbara Kaulen
Barbara Kaulen
Hanna G. Zimmermann
Hanna G. Zimmermann
Ava K. Bittner
Ava K. Bittner
Michael Dorr
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Jan-Patrick Stellmann
Jan-Patrick Stellmann
author_sort Sina C. Rosenkranz
title Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients
title_short Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients
title_full Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients
title_fullStr Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients
title_full_unstemmed Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis Patients
title_sort validation of computer-adaptive contrast sensitivity as a tool to assess visual impairment in multiple sclerosis patients
publisher Frontiers Media S.A.
series Frontiers in Neuroscience
issn 1662-453X
publishDate 2021-02-01
description BackgroundImpairment of visual function is one of the major symptoms of people with multiple sclerosis (pwMS). A multitude of disease effects including inflammation and neurodegeneration lead to structural impairment in the visual system. However, the gold standard of disability quantification, the expanded disability status scale (EDSS), relies on visual assessment charts. A more comprehensive assessment of visual function is the full contrast sensitivity function (CSF), but most tools are time consuming and not feasible in clinical routine. The quantitative CSF (qCSF) test is a computerized test to assess the full CSF. We have already shown a better correlation with visual quality of life (QoL) than for classical high and low contrast charts in multiple sclerosis (MS).ObjectiveTo study the precision, test duration, and repeatability of the qCSF in pwMS. In order to evaluate the discrimination ability, we compared the data of pwMS to healthy controls.MethodsWe recruited two independent cohorts of MS patients. Within the precision cohort (n = 54), we analyzed the benefit of running 50 instead of 25 qCSF trials. The repeatability cohort (n = 44) was assessed by high contrast vision charts and qCSF assessments twice and we computed repeatability metrics. For the discrimination ability we used the data from all pwMS without any previous optic neuritis and compared the area under the log CSF (AULCSF) to an age-matched healthy control data set.ResultsWe identified 25 trials of the qCSF algorithm as a sufficient amount for a precise estimate of the CSF. The median test duration for one eye was 185 s (range 129–373 s). The AULCSF had better test–retest repeatability (Mean Average Precision, MAP) than visual acuity measured by standard high contrast visual acuity charts or CSF acuity measured with the qCSF (0.18 vs. 0.11 and 0.17, respectively). Even better repeatability (MAP = 0.19) was demonstrated by a CSF-derived feature that was inspired by low-contrast acuity charts, i.e., the highest spatial frequency at 25% contrast. When compared to healthy controls, the MS patients showed reduced CSF (average AULCSF 1.21 vs. 1.42, p < 0.01).ConclusionHigh precision, usability, repeatability, and discrimination support the qCSF as a tool to assess contrast vision in pwMS.
topic qCSF
AULCSF
precision
repeatability
discrimination
multiple sclerosis
url https://www.frontiersin.org/articles/10.3389/fnins.2021.591302/full
work_keys_str_mv AT sinacrosenkranz validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT sinacrosenkranz validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT barbarakaulen validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT barbarakaulen validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT hannagzimmermann validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT hannagzimmermann validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT avakbittner validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT avakbittner validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT michaeldorr validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT janpatrickstellmann validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT janpatrickstellmann validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT janpatrickstellmann validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
AT janpatrickstellmann validationofcomputeradaptivecontrastsensitivityasatooltoassessvisualimpairmentinmultiplesclerosispatients
_version_ 1724254972743254016
spelling doaj-1dbb5bb3d6014bd999a9f479f7f20bad2021-02-23T06:32:36ZengFrontiers Media S.A.Frontiers in Neuroscience1662-453X2021-02-011510.3389/fnins.2021.591302591302Validation of Computer-Adaptive Contrast Sensitivity as a Tool to Assess Visual Impairment in Multiple Sclerosis PatientsSina C. Rosenkranz0Sina C. Rosenkranz1Barbara Kaulen2Barbara Kaulen3Hanna G. Zimmermann4Hanna G. Zimmermann5Ava K. Bittner6Ava K. Bittner7Michael Dorr8Jan-Patrick Stellmann9Jan-Patrick Stellmann10Jan-Patrick Stellmann11Jan-Patrick Stellmann12Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie, Hamburg, GermanyKlinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, GermanyInstitut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie, Hamburg, GermanyKlinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, GermanyExperimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyNeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, GermanyCollege of Optometry, Nova Southeastern University, Fort Lauderdale, FL, United StatesDepartment of Ophthalmology, Stein Eye Institute, University of California, Los Angeles, Los Angeles, CA, United StatesAdaptive Sensory Technology, Lübeck, GermanyInstitut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie, Hamburg, GermanyKlinik und Poliklinik für Neurologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, GermanyAPHM, Hôpital de la Timone, CEMEREM, Marseille, FranceAix Marseille Université, CRMBM, CNRS UMR 7339, Marseille, FranceBackgroundImpairment of visual function is one of the major symptoms of people with multiple sclerosis (pwMS). A multitude of disease effects including inflammation and neurodegeneration lead to structural impairment in the visual system. However, the gold standard of disability quantification, the expanded disability status scale (EDSS), relies on visual assessment charts. A more comprehensive assessment of visual function is the full contrast sensitivity function (CSF), but most tools are time consuming and not feasible in clinical routine. The quantitative CSF (qCSF) test is a computerized test to assess the full CSF. We have already shown a better correlation with visual quality of life (QoL) than for classical high and low contrast charts in multiple sclerosis (MS).ObjectiveTo study the precision, test duration, and repeatability of the qCSF in pwMS. In order to evaluate the discrimination ability, we compared the data of pwMS to healthy controls.MethodsWe recruited two independent cohorts of MS patients. Within the precision cohort (n = 54), we analyzed the benefit of running 50 instead of 25 qCSF trials. The repeatability cohort (n = 44) was assessed by high contrast vision charts and qCSF assessments twice and we computed repeatability metrics. For the discrimination ability we used the data from all pwMS without any previous optic neuritis and compared the area under the log CSF (AULCSF) to an age-matched healthy control data set.ResultsWe identified 25 trials of the qCSF algorithm as a sufficient amount for a precise estimate of the CSF. The median test duration for one eye was 185 s (range 129–373 s). The AULCSF had better test–retest repeatability (Mean Average Precision, MAP) than visual acuity measured by standard high contrast visual acuity charts or CSF acuity measured with the qCSF (0.18 vs. 0.11 and 0.17, respectively). Even better repeatability (MAP = 0.19) was demonstrated by a CSF-derived feature that was inspired by low-contrast acuity charts, i.e., the highest spatial frequency at 25% contrast. When compared to healthy controls, the MS patients showed reduced CSF (average AULCSF 1.21 vs. 1.42, p < 0.01).ConclusionHigh precision, usability, repeatability, and discrimination support the qCSF as a tool to assess contrast vision in pwMS.https://www.frontiersin.org/articles/10.3389/fnins.2021.591302/fullqCSFAULCSFprecisionrepeatabilitydiscriminationmultiple sclerosis