Molecular identification of sibling species of Sclerodermus (Hymenoptera: Bethylidae) that parasitize buprestid and cerambycid beetles by using partial sequences of mitochondrial DNA cytochrome oxidase subunit 1 and 28S ribosomal RNA gene.

The species belonging to Sclerodermus (Hymenoptera: Bethylidae) are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morph...

Full description

Bibliographic Details
Main Authors: Yuan Jiang, Zhongqi Yang, Xiaoyi Wang, Yuxia Hou
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2015-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0119573
Description
Summary:The species belonging to Sclerodermus (Hymenoptera: Bethylidae) are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morphological features. To address this issue, we conducted phylogenetic and genetic analyses of cytochrome oxidase subunit I (COI) and 28S RNA gene sequences from eight species of Sclerodermus reared from different wood borer pests. The eight sibling species were as follows: S. guani Xiao et Wu, S. sichuanensis Xiao, S. pupariae Yang et Yao, and Sclerodermus spp. (Nos. 1-5). A 594-bp fragment of COI and 750-bp fragment of 28S were subsequently sequenced. For COI, the G-C content was found to be low in all the species, averaging to about 30.0%. Sequence divergences (Kimura-2-parameter distances) between congeneric species averaged to 4.5%, and intraspecific divergences averaged to about 0.09%. Further, the maximum sequence divergences between congeneric species and Sclerodermus sp. (No. 5) averaged to about 16.5%. All 136 samples analyzed were included in six reciprocally monophyletic clades in the COI neighbor-joining (NJ) tree. The NJ tree inferred from the 28S rRNA sequence yielded almost identical results, but the samples from S. guani, S. sichuanensis, S. pupariae, and Sclerodermus spp. (Nos. 1-4) clustered together and only Sclerodermus sp. (No. 5) clustered separately. Our findings indicate that the standard barcode region of COI can be efficiently used to distinguish morphologically similar Sclerodermus species. Further, we speculate that Sclerodermus sp. (No. 5) might be a new species of Sclerodermus.
ISSN:1932-6203