Rescue of collapsed replication forks is dependent on NSMCE2 to prevent mitotic DNA damage.
NSMCE2 is an E3 SUMO ligase and a subunit of the SMC5/6 complex that associates with the replication fork and protects against genomic instability. Here, we study the fate of collapsed replication forks generated by prolonged hydroxyurea treatment in human NSMCE2-deficient cells. Double strand break...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-02-01
|
Series: | PLoS Genetics |
Online Access: | http://europepmc.org/articles/PMC6383951?pdf=render |
Summary: | NSMCE2 is an E3 SUMO ligase and a subunit of the SMC5/6 complex that associates with the replication fork and protects against genomic instability. Here, we study the fate of collapsed replication forks generated by prolonged hydroxyurea treatment in human NSMCE2-deficient cells. Double strand breaks accumulate during rescue by converging forks in normal cells but not in NSMCE2-deficient cells. Un-rescued forks persist into mitosis, leading to increased mitotic DNA damage. Excess RAD51 accumulates and persists at collapsed forks in NSMCE2-deficient cells, possibly due to lack of BLM recruitment to stalled forks. Despite failure of BLM to accumulate at stalled forks, NSMCE2-deficient cells exhibit lower levels of hydroxyurea-induced sister chromatid exchange. In cells deficient in both NSMCE2 and BLM, hydroxyurea-induced double strand breaks and sister chromatid exchange resembled levels found in NSCME2-deficient cells. We conclude that the rescue of collapsed forks by converging forks is dependent on NSMCE2. |
---|---|
ISSN: | 1553-7390 1553-7404 |