Robust Decentralized Adaptive Neural Control for a Class of Nonaffine Nonlinear Large-Scale Systems with Unknown Dead Zones

The problem of robust decentralized adaptive neural stabilization control is investigated for a class of nonaffine nonlinear interconnected large-scale systems with unknown dead zones. In the controller design procedure, radical basis function (RBF) neural networks are applied to approximate package...

Full description

Bibliographic Details
Main Authors: Huanqing Wang, Qi Zhou, Xuebo Yang, Hamid Reza Karimi
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2014/841306
Description
Summary:The problem of robust decentralized adaptive neural stabilization control is investigated for a class of nonaffine nonlinear interconnected large-scale systems with unknown dead zones. In the controller design procedure, radical basis function (RBF) neural networks are applied to approximate packaged unknown nonlinearities and then an adaptive neural decentralized controller is systematically derived without requiring any information on the boundedness of dead zone parameters (slopes and break points). It is proven that the developed control scheme can ensure that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded in the sense of mean square. Simulation study is provided to further demonstrate the effectiveness of the developed control scheme.
ISSN:1024-123X
1563-5147