Ultrathin g-C3N4 Nanosheet-Modified BiOCl Hierarchical Flower-Like Plate Heterostructure with Enhanced Photostability and Photocatalytic Performance

A novel ultrathin g-C3N4 nanosheet-modified BiOCl hierarchical flower-like plate heterostructure (abbreviated as BC/CN) was constructed via a thermal polymerization of urea precursor followed with hydrolysis route. The as-prepared samples were well characterized by various analytical techniques. The...

Full description

Bibliographic Details
Main Authors: Tiekun Jia, Jili Li, Fei Long, Fang Fu, Junwei Zhao, Zhao Deng, Xiaohui Wang, Ying Zhang
Format: Article
Language:English
Published: MDPI AG 2017-08-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/7/9/266
Description
Summary:A novel ultrathin g-C3N4 nanosheet-modified BiOCl hierarchical flower-like plate heterostructure (abbreviated as BC/CN) was constructed via a thermal polymerization of urea precursor followed with hydrolysis route. The as-prepared samples were well characterized by various analytical techniques. The morphological observation showed that hierarchical flower-like BiOCl nanoplates were discretely anchored on the surface of ultra-thin C3N4 nanosheets. The photocatalytic performance of the as-prepared photocatalysts was evaluated by degradation of methylene blue (MB) under visible-light irradiation. The results showed that BC/CN photocatalyst exhibited enhanced photostability and photocatalytic performance in the degradation process. On the basis of experimental results and the analysis of band energy structure, it could be inferred that the enhanced photocatalytic performance of BC/CN photocatalyst was intimately related with the hybridization of hierarchical flower-like BiOCl nanoplates with ultrathin g-C3N4 nanosheets, which provided good adsorptive capacity, extended light absorption, suppressed the recombination of photo-generated electron–hole pairs, and facilitated charge transfer efficiently.
ISSN:2073-4352