Decursin Isolated from Angelica gigas Nakai Rescues PC12 Cells from Amyloid β-Protein-Induced Neurotoxicity through Nrf2-Mediated Upregulation of Heme Oxygenase-1: Potential Roles of MAPK

Decursin (D), purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed that D reduced Aβ25‒35-induced cytotoxicity in PC12 cells. Our study explored the underlying mechanisms by which D mediates its therapeutic effects in vitro. Pretreatment of c...

Full description

Bibliographic Details
Main Authors: Li Li, Ji-kun Du, Li-yi Zou, Tie Wu, Yong-woo Lee, Yong-ho Kim
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Evidence-Based Complementary and Alternative Medicine
Online Access:http://dx.doi.org/10.1155/2013/467245
Description
Summary:Decursin (D), purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed that D reduced Aβ25‒35-induced cytotoxicity in PC12 cells. Our study explored the underlying mechanisms by which D mediates its therapeutic effects in vitro. Pretreatment of cells with D diminished intracellular generation of ROS in response to Aβ25‒35. Western blot revealed that D significantly increased the expression and activity of HO-1, which was correlated with its protection against Aβ25‒35-induced injury. Addition of ZnPP, an HO-1 competitive inhibitor, significantly attenuated its protective effect in Aβ25‒35-treated cells, indicating the vital role of HO-1 resistance to oxidative injury. Moreover, D induced Nrf2 nuclear translocation, the upstream of HO-1 expression. While investigating the signaling pathways responsible for HO-1 induction, D activated ERK and dephosphorylated p38 in PC12 cells. Addition of U0126, a selective inhibitor of ERK, blocked D-induced Nrf2 activation and HO-1 induction and meanwhile reversed the protection of D against Aβ25‒35-induced cell death. These findings suggest D augments cellular antioxidant defense capacity through both intrinsic free radical scavenging activity and activation of MAPK signal pathways that leads to Nrf2 activation, and subsequently HO-1 induction, thereby protecting the PC12 cells from Aβ25‒35-induced oxidative cytotoxicity.
ISSN:1741-427X
1741-4288