The Generalized Non-absolute type of sequence spaces

In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}...

Full description

Bibliographic Details
Main Authors: Nagarajan Subramanian, M. R. Bivin, Nallaswamy Saivaraju
Format: Article
Language:English
Published: Sociedade Brasileira de Matemática 2016-09-01
Series:Boletim da Sociedade Paranaense de Matemática
Subjects:
Online Access:http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/25674
id doaj-1eac21db52dc4abbbb7a1042700eaf29
record_format Article
spelling doaj-1eac21db52dc4abbbb7a1042700eaf292020-11-24T21:54:36ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882016-09-0134226327410.5269/bspm.v34i1.2567412851The Generalized Non-absolute type of sequence spacesNagarajan Subramanian0M. R. Bivin1Nallaswamy Saivaraju2SASTRA University Department of MathematicsCare Group of Institutions Department of MathematicsSri Angalamman College of Engineering and Technology Department of MathematicsIn this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}$ and $\left[\Lambda^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)},$ which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\chi^{2}$ and $\Lambda^{2},$ respectively. Moreover, we establish some inclusion relations between these spaces.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/25674analytic sequencedouble sequences$\chi^{2}$ spacedifference sequence spaceMusielak - modulus function$p-$ metric space, Idealideal convergentfuzzy numbermultiplier spacenon-absolute type
collection DOAJ
language English
format Article
sources DOAJ
author Nagarajan Subramanian
M. R. Bivin
Nallaswamy Saivaraju
spellingShingle Nagarajan Subramanian
M. R. Bivin
Nallaswamy Saivaraju
The Generalized Non-absolute type of sequence spaces
Boletim da Sociedade Paranaense de Matemática
analytic sequence
double sequences
$\chi^{2}$ space
difference sequence space
Musielak - modulus function
$p-$ metric space, Ideal
ideal convergent
fuzzy number
multiplier space
non-absolute type
author_facet Nagarajan Subramanian
M. R. Bivin
Nallaswamy Saivaraju
author_sort Nagarajan Subramanian
title The Generalized Non-absolute type of sequence spaces
title_short The Generalized Non-absolute type of sequence spaces
title_full The Generalized Non-absolute type of sequence spaces
title_fullStr The Generalized Non-absolute type of sequence spaces
title_full_unstemmed The Generalized Non-absolute type of sequence spaces
title_sort generalized non-absolute type of sequence spaces
publisher Sociedade Brasileira de Matemática
series Boletim da Sociedade Paranaense de Matemática
issn 0037-8712
2175-1188
publishDate 2016-09-01
description In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}$ and $\left[\Lambda^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)},$ which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\chi^{2}$ and $\Lambda^{2},$ respectively. Moreover, we establish some inclusion relations between these spaces.
topic analytic sequence
double sequences
$\chi^{2}$ space
difference sequence space
Musielak - modulus function
$p-$ metric space, Ideal
ideal convergent
fuzzy number
multiplier space
non-absolute type
url http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/25674
work_keys_str_mv AT nagarajansubramanian thegeneralizednonabsolutetypeofsequencespaces
AT mrbivin thegeneralizednonabsolutetypeofsequencespaces
AT nallaswamysaivaraju thegeneralizednonabsolutetypeofsequencespaces
AT nagarajansubramanian generalizednonabsolutetypeofsequencespaces
AT mrbivin generalizednonabsolutetypeofsequencespaces
AT nallaswamysaivaraju generalizednonabsolutetypeofsequencespaces
_version_ 1725866931889635328