The Generalized Non-absolute type of sequence spaces
In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2016-09-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/25674 |
id |
doaj-1eac21db52dc4abbbb7a1042700eaf29 |
---|---|
record_format |
Article |
spelling |
doaj-1eac21db52dc4abbbb7a1042700eaf292020-11-24T21:54:36ZengSociedade Brasileira de MatemáticaBoletim da Sociedade Paranaense de Matemática0037-87122175-11882016-09-0134226327410.5269/bspm.v34i1.2567412851The Generalized Non-absolute type of sequence spacesNagarajan Subramanian0M. R. Bivin1Nallaswamy Saivaraju2SASTRA University Department of MathematicsCare Group of Institutions Department of MathematicsSri Angalamman College of Engineering and Technology Department of MathematicsIn this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}$ and $\left[\Lambda^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)},$ which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\chi^{2}$ and $\Lambda^{2},$ respectively. Moreover, we establish some inclusion relations between these spaces.http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/25674analytic sequencedouble sequences$\chi^{2}$ spacedifference sequence spaceMusielak - modulus function$p-$ metric space, Idealideal convergentfuzzy numbermultiplier spacenon-absolute type |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Nagarajan Subramanian M. R. Bivin Nallaswamy Saivaraju |
spellingShingle |
Nagarajan Subramanian M. R. Bivin Nallaswamy Saivaraju The Generalized Non-absolute type of sequence spaces Boletim da Sociedade Paranaense de Matemática analytic sequence double sequences $\chi^{2}$ space difference sequence space Musielak - modulus function $p-$ metric space, Ideal ideal convergent fuzzy number multiplier space non-absolute type |
author_facet |
Nagarajan Subramanian M. R. Bivin Nallaswamy Saivaraju |
author_sort |
Nagarajan Subramanian |
title |
The Generalized Non-absolute type of sequence spaces |
title_short |
The Generalized Non-absolute type of sequence spaces |
title_full |
The Generalized Non-absolute type of sequence spaces |
title_fullStr |
The Generalized Non-absolute type of sequence spaces |
title_full_unstemmed |
The Generalized Non-absolute type of sequence spaces |
title_sort |
generalized non-absolute type of sequence spaces |
publisher |
Sociedade Brasileira de Matemática |
series |
Boletim da Sociedade Paranaense de Matemática |
issn |
0037-8712 2175-1188 |
publishDate |
2016-09-01 |
description |
In this paper we introduce the notion of $\lambda_{mn}-\chi^{2}$ and $\Lambda^{2}$ sequences. Further, we introduce the spaces $\left[\chi^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)}$ and $\left[\Lambda^{2q\lambda}_{f\mu },\left\|\left(d\left(x_{1},0\right),d\left(x_{2},0\right),\cdots, d\left(x_{n-1},0\right)\right)\right\|_{p}\right]^{\textit{I}\left(F\right)},$ which are of non-absolute type and we prove that these spaces are linearly isomorphic to the spaces $\chi^{2}$ and $\Lambda^{2},$ respectively. Moreover, we establish some inclusion relations between these spaces. |
topic |
analytic sequence double sequences $\chi^{2}$ space difference sequence space Musielak - modulus function $p-$ metric space, Ideal ideal convergent fuzzy number multiplier space non-absolute type |
url |
http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/25674 |
work_keys_str_mv |
AT nagarajansubramanian thegeneralizednonabsolutetypeofsequencespaces AT mrbivin thegeneralizednonabsolutetypeofsequencespaces AT nallaswamysaivaraju thegeneralizednonabsolutetypeofsequencespaces AT nagarajansubramanian generalizednonabsolutetypeofsequencespaces AT mrbivin generalizednonabsolutetypeofsequencespaces AT nallaswamysaivaraju generalizednonabsolutetypeofsequencespaces |
_version_ |
1725866931889635328 |