The left fusiform gyrus is a critical region contributing to the core behavioral profile of semantic dementia

Given that extensive cerebral regions are co-atrophic in semantic dementia (SD), it is not yet known which critical regions (SD-semantic-critical regions) are really responsible for the semantic deficits of SD. To identify the SD-semantic-critical regions, we explored the relationship between the de...

Full description

Bibliographic Details
Main Authors: Junhua eDing, Keliang eChen, Yan eChen, Yuxing eFang, Qing eYang, Yingru eLv, Nan eLin, Yanchao eBi, Qihao eGuo, Zaizhu eHan
Format: Article
Language:English
Published: Frontiers Media S.A. 2016-05-01
Series:Frontiers in Human Neuroscience
Subjects:
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnhum.2016.00215/full
Description
Summary:Given that extensive cerebral regions are co-atrophic in semantic dementia (SD), it is not yet known which critical regions (SD-semantic-critical regions) are really responsible for the semantic deficits of SD. To identify the SD-semantic-critical regions, we explored the relationship between the degree of cerebral atrophy in the whole brain and the severity of semantic deficits in 19 individuals with SD. We found that the gray matter volumes of two regions [left fusiform gyrus (lFFG) and left parahippocampal gyrus (lPHG)] significantly correlated with the semantic scores of patients with SD. Importantly, the effects of the lFFG remained significant after controlling for the gray matter volumes of the lPHG. Moreover, the effects of the region could not be accounted for by the total gray matter volume, general cognitive ability, laterality of brain atrophy, or control task performance. We further observed that each atrophic portion of the lFFG along the anterior-posterior axis might dedicate to the loss of semantic functions in SD. These results reveal that the lFFG could be a critical region contributing to the semantic deficits of SD.
ISSN:1662-5161