Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols

We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ...

Full description

Bibliographic Details
Main Authors: Yessica Hernández-Eliseo, Josué Ramírez-Ortega, Francisco G. Hernández-Zamora
Format: Article
Language:English
Published: Hindawi Limited 2021-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2021/8855599
id doaj-1ebed50f6f2f4062b90e7ea0e894bff5
record_format Article
spelling doaj-1ebed50f6f2f4062b90e7ea0e894bff52021-02-15T12:53:04ZengHindawi LimitedJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/88555998855599Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent SymbolsYessica Hernández-Eliseo0Josué Ramírez-Ortega1Francisco G. Hernández-Zamora2Universidad Veracruzana, MexicoUniversidad Veracruzana, MexicoUniversidad Veracruzana, MexicoWe describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ2−ζ12, where both limits lims→0+bs and lims→+∞bs exist, and as belongs to the set of piecewise continuous functions on ℝ¯=−∞,+∞ and having one-side limit values at each point of a finite set S⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to CΠ¯, where Π¯=ℝ¯×ℝ¯+ and ℝ¯+=0,+∞.http://dx.doi.org/10.1155/2021/8855599
collection DOAJ
language English
format Article
sources DOAJ
author Yessica Hernández-Eliseo
Josué Ramírez-Ortega
Francisco G. Hernández-Zamora
spellingShingle Yessica Hernández-Eliseo
Josué Ramírez-Ortega
Francisco G. Hernández-Zamora
Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
Journal of Function Spaces
author_facet Yessica Hernández-Eliseo
Josué Ramírez-Ortega
Francisco G. Hernández-Zamora
author_sort Yessica Hernández-Eliseo
title Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
title_short Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
title_full Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
title_fullStr Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
title_full_unstemmed Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
title_sort toeplitz operators acting on true-poly-bergman type spaces of the two-dimensional siegel domain: nilpotent symbols
publisher Hindawi Limited
series Journal of Function Spaces
issn 2314-8896
2314-8888
publishDate 2021-01-01
description We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ2−ζ12, where both limits lims→0+bs and lims→+∞bs exist, and as belongs to the set of piecewise continuous functions on ℝ¯=−∞,+∞ and having one-side limit values at each point of a finite set S⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to CΠ¯, where Π¯=ℝ¯×ℝ¯+ and ℝ¯+=0,+∞.
url http://dx.doi.org/10.1155/2021/8855599
work_keys_str_mv AT yessicahernandezeliseo toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols
AT josueramirezortega toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols
AT franciscoghernandezzamora toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols
_version_ 1714866581171863552