Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols
We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2021-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2021/8855599 |
id |
doaj-1ebed50f6f2f4062b90e7ea0e894bff5 |
---|---|
record_format |
Article |
spelling |
doaj-1ebed50f6f2f4062b90e7ea0e894bff52021-02-15T12:53:04ZengHindawi LimitedJournal of Function Spaces2314-88962314-88882021-01-01202110.1155/2021/88555998855599Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent SymbolsYessica Hernández-Eliseo0Josué Ramírez-Ortega1Francisco G. Hernández-Zamora2Universidad Veracruzana, MexicoUniversidad Veracruzana, MexicoUniversidad Veracruzana, MexicoWe describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ2−ζ12, where both limits lims→0+bs and lims→+∞bs exist, and as belongs to the set of piecewise continuous functions on ℝ¯=−∞,+∞ and having one-side limit values at each point of a finite set S⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to CΠ¯, where Π¯=ℝ¯×ℝ¯+ and ℝ¯+=0,+∞.http://dx.doi.org/10.1155/2021/8855599 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yessica Hernández-Eliseo Josué Ramírez-Ortega Francisco G. Hernández-Zamora |
spellingShingle |
Yessica Hernández-Eliseo Josué Ramírez-Ortega Francisco G. Hernández-Zamora Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols Journal of Function Spaces |
author_facet |
Yessica Hernández-Eliseo Josué Ramírez-Ortega Francisco G. Hernández-Zamora |
author_sort |
Yessica Hernández-Eliseo |
title |
Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_short |
Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_full |
Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_fullStr |
Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_full_unstemmed |
Toeplitz Operators Acting on True-Poly-Bergman Type Spaces of the Two-Dimensional Siegel Domain: Nilpotent Symbols |
title_sort |
toeplitz operators acting on true-poly-bergman type spaces of the two-dimensional siegel domain: nilpotent symbols |
publisher |
Hindawi Limited |
series |
Journal of Function Spaces |
issn |
2314-8896 2314-8888 |
publishDate |
2021-01-01 |
description |
We describe certain C∗-algebras generated by Toeplitz operators with nilpotent symbols and acting on a poly-Bergman type space of the Siegel domain D2⊂ℂ2. Bounded measurable functions of the form cIm ζ1,Im ζ2−ζ12 are called nilpotent symbols. In this work, we consider symbols of the form aIm ζ1bIm ζ2−ζ12, where both limits lims→0+bs and lims→+∞bs exist, and as belongs to the set of piecewise continuous functions on ℝ¯=−∞,+∞ and having one-side limit values at each point of a finite set S⊂ℝ. We prove that the C∗-algebra generated by all Toeplitz operators Tab is isomorphic to CΠ¯, where Π¯=ℝ¯×ℝ¯+ and ℝ¯+=0,+∞. |
url |
http://dx.doi.org/10.1155/2021/8855599 |
work_keys_str_mv |
AT yessicahernandezeliseo toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols AT josueramirezortega toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols AT franciscoghernandezzamora toeplitzoperatorsactingontruepolybergmantypespacesofthetwodimensionalsiegeldomainnilpotentsymbols |
_version_ |
1714866581171863552 |