Summary: | In this paper a novel outer-rotor consequent pole permanent magnet machine (OR-CPPMM) with H-type modular stator core is proposed for higher average torque (<inline-formula> <tex-math notation="LaTeX">$T_{avg}$ </tex-math></inline-formula>), flux linkage (<inline-formula> <tex-math notation="LaTeX">$\Phi$ </tex-math></inline-formula>) and efficiency (<inline-formula> <tex-math notation="LaTeX">$\eta$ </tex-math></inline-formula>) whereas low cogging torque (<inline-formula> <tex-math notation="LaTeX">$T_{cog}$ </tex-math></inline-formula>), torque ripple (<inline-formula> <tex-math notation="LaTeX">$T_{rip}$ </tex-math></inline-formula>) and harmonics content in flux linkage (<inline-formula> <tex-math notation="LaTeX">$\Phi _{THD}$ </tex-math></inline-formula>) and back-EMF (<inline-formula> <tex-math notation="LaTeX">${\mathrm {EMF}}_{THD}$ </tex-math></inline-formula>). The proposed OR-CPPMM is investigated with different stator flux gaps width for static and dynamics electromagnetic performances. Analysis reveals that flux gaps in H-type stator core not only improve electromagnetic performance i.e., <inline-formula> <tex-math notation="LaTeX">$\Phi $ </tex-math></inline-formula> is enhanced by 10.23%, <inline-formula> <tex-math notation="LaTeX">$\Phi _{THD}$ </tex-math></inline-formula> is suppressed by 80.65%, diminished <inline-formula> <tex-math notation="LaTeX">${\mathrm {EMF}}_{THD}$ </tex-math></inline-formula> by 59.37%, truncate <inline-formula> <tex-math notation="LaTeX">$T_{rip}$ </tex-math></inline-formula> by 44.37% and improve <inline-formula> <tex-math notation="LaTeX">$T_{avg}$ </tex-math></inline-formula> by 15.99% but also exhibits better flux focusing effect to enhance flux linkage and diminish harmonic contents. In addition, H-type modular stator structure provide physical isolation of adjacent phase that de-couple the adjacent phase coupling flux which enhance self-inductance and weaken mutual-inductance and hence improve fault tolerant capability. In addition, to elaborate effectiveness of the proposed design and justification of OR-CPPMM novelty with H-type modular stator, electromagnetic performance is extensively compared with existing state of the art including E-core and C-core structure. Analysis and comparison with state-of-the-art reveals that proposed OR-CPPMM enhanced <inline-formula> <tex-math notation="LaTeX">$\Phi $ </tex-math></inline-formula> by 65.35%, diminish <inline-formula> <tex-math notation="LaTeX">$\Phi _{THD}$ </tex-math></inline-formula> by 67.24%, truncate <inline-formula> <tex-math notation="LaTeX">$T_{cog}$ </tex-math></inline-formula> by 96.72%, suppresses <inline-formula> <tex-math notation="LaTeX">${EMF}_{THD}$ </tex-math></inline-formula> by 44.40%, diminish <inline-formula> <tex-math notation="LaTeX">$T_{rip}$ </tex-math></inline-formula> by 77.23% whereas <inline-formula> <tex-math notation="LaTeX">$T_{avg}$ </tex-math></inline-formula> is enhanced by 91.69%. Furthermore, the proposed design novelty is justified with comparison of OR-CPPMM with inner rotor and dual rotor permanent magnet flux switching machines. Comparison and analysis unveil that OR-CPPMM exhibits <inline-formula> <tex-math notation="LaTeX">$T_{avg}$ </tex-math></inline-formula> higher up to 35.16%, truncate <inline-formula> <tex-math notation="LaTeX">$T_{rip}$ </tex-math></inline-formula> up to 32.88%, enhanced <inline-formula> <tex-math notation="LaTeX">$\Phi $ </tex-math></inline-formula> up to 22.13% and boost <inline-formula> <tex-math notation="LaTeX">$T_{den}$ </tex-math></inline-formula> to 3.41 times at the cost of 2.58% increase in <inline-formula> <tex-math notation="LaTeX">$T_{rip}$ </tex-math></inline-formula>.
|