Preparation of Low Rolling Resistance Modified Asphalt and Analysis of Its Rolling Resistance and Viscoelasticity

Tire tread of running vehicles generates rolling resistance with the pavement, thereby influencing energy consumption. Thus, developing low rolling resistance pavement can improve the service function of tires. Common matrix asphalt and high module binder modifier (HMB-W) was used to obtain low roll...

Full description

Bibliographic Details
Main Authors: Haibin Li*, Mingming Zhang, Wenbo Li, Yan Li, Qinwei Ma, Guijuan Zhao
Format: Article
Language:English
Published: Faculty of Mechanical Engineering in Slavonski Brod, Faculty of Electrical Engineering in Osijek, Faculty of Civil Engineering in Osijek 2021-01-01
Series:Tehnički Vjesnik
Subjects:
Online Access:https://hrcak.srce.hr/file/379498
Description
Summary:Tire tread of running vehicles generates rolling resistance with the pavement, thereby influencing energy consumption. Thus, developing low rolling resistance pavement can improve the service function of tires. Common matrix asphalt and high module binder modifier (HMB-W) was used to obtain low rolling resistance of asphalt and effectively reduce energy consumption. Its low rolling resistance performance was analyzed via internal heat-generating test, rolling resistance test, and dynamic shear rheological test. Then, a rolling resistance model was constructed to evaluate its thermal losses. Test results show that compared with styrene-butadiene-styrene (SBS) modified asphalt and its mastic, the heat generation rates of HMB-W modified asphalt and its mastic are reduced by 14.4% and 15.5%, respectively. Thus, energy loss can be effectively reduced. The generated heat quantity and power loss were reduced by 3.7% and 5%, respectively, compared with the SBS modified asphalt. In addition, the low rolling resistance is evident. HMB-W asphalt has low-temperature sensitivity and superior high-temperature stability. Under the same stress level, the complex shear module G* of HMB-W asphalt is evidently higher than that of SBS modified asphalt. Under the same temperature condition, the energy stored is high when HMB-W asphalt goes through elastic deformation with small viscosity loss.
ISSN:1330-3651
1848-6339