Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis

<p>Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (<span class="inline-formula">bSiO<sub>2</sub></span>) and terrigenous Si minerals and modulated by the precipitation of authigeni...

Full description

Bibliographic Details
Main Authors: S. Geilert, P. Grasse, K. Doering, K. Wallmann, C. Ehlert, F. Scholz, M. Frank, M. Schmidt, C. Hensen
Format: Article
Language:English
Published: Copernicus Publications 2020-04-01
Series:Biogeosciences
Online Access:https://www.biogeosciences.net/17/1745/2020/bg-17-1745-2020.pdf
id doaj-1fd3823405034b439395523614d20cbf
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author S. Geilert
P. Grasse
K. Doering
K. Doering
K. Wallmann
C. Ehlert
F. Scholz
M. Frank
M. Schmidt
C. Hensen
spellingShingle S. Geilert
P. Grasse
K. Doering
K. Doering
K. Wallmann
C. Ehlert
F. Scholz
M. Frank
M. Schmidt
C. Hensen
Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
Biogeosciences
author_facet S. Geilert
P. Grasse
K. Doering
K. Doering
K. Wallmann
C. Ehlert
F. Scholz
M. Frank
M. Schmidt
C. Hensen
author_sort S. Geilert
title Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
title_short Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
title_full Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
title_fullStr Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
title_full_unstemmed Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesis
title_sort impact of ambient conditions on the si isotope fractionation in marine pore fluids during early diagenesis
publisher Copernicus Publications
series Biogeosciences
issn 1726-4170
1726-4189
publishDate 2020-04-01
description <p>Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (<span class="inline-formula">bSiO<sub>2</sub></span>) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span> values can help to decipher the complex Si cycle in surface sediments. In this study, the <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span> signatures of pore fluids and <span class="inline-formula">bSiO<sub>2</sub></span> in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high <span class="inline-formula">bSiO<sub>2</sub></span> accumulation and hydrothermal activity. The <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span> signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signatures differ significantly depending on the ambient conditions. Within the basin, <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> is essentially uniform, averaging <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1.2</mn><mo>±</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ca38ecc4ca5ca8e0ad111d2d99737f8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-1745-2020-ie00001.svg" width="52pt" height="10pt" src="bg-17-1745-2020-ie00001.png"/></svg:svg></span></span>&thinsp;‰ (1&thinsp;SD). Pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> values from within the OMZ are significantly lower (<span class="inline-formula">0.0±0.5</span>&thinsp;‰, 1&thinsp;SD), while pore fluids close to the hydrothermal vent field are higher (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">2.0</mn><mo>±</mo><mn mathvariant="normal">0.2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="09a7def3a55ea0f403188d2166f2a85f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-1745-2020-ie00002.svg" width="52pt" height="10pt" src="bg-17-1745-2020-ie00002.png"/></svg:svg></span></span>&thinsp;‰, 1SD). Reactive transport modeling results show that the <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> is mainly controlled by silica dissolution (<span class="inline-formula">bSiO<sub>2</sub></span> and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MAR<span class="inline-formula"><sub>terr</sub></span>) is required to promote the low <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water&thinsp;<span class="inline-formula">∕</span>&thinsp;rock ratios. Guaymas OMZ <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signals in OMZs worldwide are not alike and each setting can result in a range of <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.</p>
url https://www.biogeosciences.net/17/1745/2020/bg-17-1745-2020.pdf
work_keys_str_mv AT sgeilert impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT pgrasse impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT kdoering impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT kdoering impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT kwallmann impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT cehlert impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT fscholz impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT mfrank impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT mschmidt impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
AT chensen impactofambientconditionsonthesiisotopefractionationinmarineporefluidsduringearlydiagenesis
_version_ 1725085589937586176
spelling doaj-1fd3823405034b439395523614d20cbf2020-11-25T01:31:37ZengCopernicus PublicationsBiogeosciences1726-41701726-41892020-04-01171745176310.5194/bg-17-1745-2020Impact of ambient conditions on the Si isotope fractionation in marine pore fluids during early diagenesisS. Geilert0P. Grasse1K. Doering2K. Doering3K. Wallmann4C. Ehlert5F. Scholz6M. Frank7M. Schmidt8C. Hensen9GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyDepartment of Oceanography, Dalhousie University, Halifax, CanadaGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyMarine Isotope Geochemistry, ICBM, University of Oldenburg, 26129 Oldenburg, GermanyGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, GermanyGEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany<p>Benthic fluxes of dissolved silicon (Si) from sediments into the water column are driven by the dissolution of biogenic silica (<span class="inline-formula">bSiO<sub>2</sub></span>) and terrigenous Si minerals and modulated by the precipitation of authigenic Si phases. Each of these processes has a specific effect on the isotopic composition of silicon dissolved in sediment pore fluids, such that the determination of pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span> values can help to decipher the complex Si cycle in surface sediments. In this study, the <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span> signatures of pore fluids and <span class="inline-formula">bSiO<sub>2</sub></span> in the Guaymas Basin (Gulf of California) were analyzed, which is characterized by high <span class="inline-formula">bSiO<sub>2</sub></span> accumulation and hydrothermal activity. The <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span> signatures were investigated in the deep basin, in the vicinity of a hydrothermal vent field, and at an anoxic site located within the pronounced oxygen minimum zone (OMZ). The pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signatures differ significantly depending on the ambient conditions. Within the basin, <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> is essentially uniform, averaging <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M11" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">1.2</mn><mo>±</mo><mn mathvariant="normal">0.1</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="ca38ecc4ca5ca8e0ad111d2d99737f8b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-1745-2020-ie00001.svg" width="52pt" height="10pt" src="bg-17-1745-2020-ie00001.png"/></svg:svg></span></span>&thinsp;‰ (1&thinsp;SD). Pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> values from within the OMZ are significantly lower (<span class="inline-formula">0.0±0.5</span>&thinsp;‰, 1&thinsp;SD), while pore fluids close to the hydrothermal vent field are higher (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M15" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>+</mo><mn mathvariant="normal">2.0</mn><mo>±</mo><mn mathvariant="normal">0.2</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="52pt" height="10pt" class="svg-formula" dspmath="mathimg" md5hash="09a7def3a55ea0f403188d2166f2a85f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-17-1745-2020-ie00002.svg" width="52pt" height="10pt" src="bg-17-1745-2020-ie00002.png"/></svg:svg></span></span>&thinsp;‰, 1SD). Reactive transport modeling results show that the <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> is mainly controlled by silica dissolution (<span class="inline-formula">bSiO<sub>2</sub></span> and terrigenous phases) and Si precipitation (authigenic aluminosilicates). Precipitation processes cause a shift to high pore fluid <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signatures, most pronounced at the hydrothermal site. Within the OMZ, however, additional dissolution of isotopically depleted Si minerals (e.g., clays) facilitated by high mass accumulation rates of terrigenous material (MAR<span class="inline-formula"><sub>terr</sub></span>) is required to promote the low <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signatures, while precipitation of authigenic aluminosilicates seems to be hampered by high water&thinsp;<span class="inline-formula">∕</span>&thinsp;rock ratios. Guaymas OMZ <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> values are markedly different from those of the Peruvian OMZ, the only other marine OMZ setting where Si isotopes have been investigated to constrain early diagenetic processes. These differences highlight the fact that <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> signals in OMZs worldwide are not alike and each setting can result in a range of <span class="inline-formula"><i>δ</i><sup>30</sup>Si</span><span class="inline-formula"><sub>pf</sub></span> values as a function of the environmental conditions. We conclude that the benthic silicon cycle is more complex than previously thought and that additional Si isotope studies are needed to decipher the controls on Si turnover in marine sediment and the role of sediments in the marine silicon cycle.</p>https://www.biogeosciences.net/17/1745/2020/bg-17-1745-2020.pdf