Composite Quantile Regression for Varying Coefficient Models with Response Data Missing at Random

Composite quantile regression (CQR) estimation and inference are studied for varying coefficient models with response data missing at random. Three estimators including the weighted local linear CQR (WLLCQR) estimator, the nonparametric WLLCQR (NWLLCQR) estimator, and the imputed WLLCQR (IWLLCQR) es...

Full description

Bibliographic Details
Main Authors: Shuanghua Luo, Cheng-yi Zhang, Meihua Wang
Format: Article
Language:English
Published: MDPI AG 2019-08-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/9/1065
Description
Summary:Composite quantile regression (CQR) estimation and inference are studied for varying coefficient models with response data missing at random. Three estimators including the weighted local linear CQR (WLLCQR) estimator, the nonparametric WLLCQR (NWLLCQR) estimator, and the imputed WLLCQR (IWLLCQR) estimator are proposed for unknown coefficient functions. Under some mild conditions, the proposed estimators are asymptotic normal. Simulation studies demonstrate that the unknown coefficient estimators with IWLLCQR are superior to the other two with WLLCQR and NWLLCQR. Moreover, bootstrap test procedures based on the IWLLCQR fittings is developed to test whether the coefficient functions are actually varying. Finally, a type of investigated real-life data is analyzed to illustrated the applications of the proposed method.
ISSN:2073-8994