Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
<p>Chemical ionisation mass spectrometry (CIMS) using <span class="inline-formula">I<sup>−</sup></span> (the iodide anion), hereafter I-CIMS, as a primary reactant ion has previously been used to measure <span class="inline-formula">NO<sub&...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-08-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/5319/2021/amt-14-5319-2021.pdf |
id |
doaj-2056adeb25d749fcaa4ee6cf1581d5f8 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
R. Dörich P. Eger J. Lelieveld J. N. Crowley |
spellingShingle |
R. Dörich P. Eger J. Lelieveld J. N. Crowley Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone Atmospheric Measurement Techniques |
author_facet |
R. Dörich P. Eger J. Lelieveld J. N. Crowley |
author_sort |
R. Dörich |
title |
Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone |
title_short |
Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone |
title_full |
Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone |
title_fullStr |
Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone |
title_full_unstemmed |
Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone |
title_sort |
iodide cims and <i>m</i>∕<i>z</i> 62: the detection of hno<sub>3</sub> as no<sub>3</sub><sup>−</sup> in the presence of pan, peroxyacetic acid and ozone |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2021-08-01 |
description |
<p>Chemical ionisation mass spectrometry (CIMS) using <span class="inline-formula">I<sup>−</sup></span> (the iodide anion), hereafter I-CIMS, as a primary reactant ion has previously been used to measure <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> both in laboratory and field experiments. We show that reports of large daytime mixing ratios of
<span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> (both usually present in detectable amounts only at night) are likely to be heavily biased by the ubiquitous presence of <span class="inline-formula">HNO<sub>3</sub></span> in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="279239c08ce5ed5dd0fbeb16cbabd960"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00006.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00006.png"/></svg:svg></span></span> 62 using <span class="inline-formula">I<sup>−</sup></span> ions is efficient in the presence of peroxy acetyl nitric anhydride (PAN) or peroxyacetic acid (PAA) and especially <span class="inline-formula">O<sub>3</sub></span>. We have characterised the dependence of the sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> detection on the presence of acetate anions (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="12116abfd19a39506a0d5a640e4eaefd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00007.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00007.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7dc7cb769bb742b7e5caf4e3949b8538"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00008.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00008.png"/></svg:svg></span></span> 59, from either PAN or PAA). The loss of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fb6d8d7a7419664dbb3edfa51feb3cdd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00009.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00009.png"/></svg:svg></span></span> via conversion to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c3a4747f2c8783874abb0846591684f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00010.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00010.png"/></svg:svg></span></span> in the presence of <span class="inline-formula">HNO<sub>3</sub></span> may represent a significant bias in I-CIMS measurements of PAN and PAA in which continuous calibration (e.g. via addition of isotopically labelled PAN) is not carried out. The greatest sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0d76c8bd8de2f967436a9f4b1d52f77e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00011.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00011.png"/></svg:svg></span></span> 62 is achieved in the presence of ambient levels of <span class="inline-formula">O<sub>3</sub></span> whereby the thermodynamically disfavoured, direct reaction of <span class="inline-formula">I<sup>−</sup></span> with <span class="inline-formula">HNO<sub>3</sub></span> to form <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="91231030ab72dfd8d13e6de2d14574f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00012.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00012.png"/></svg:svg></span></span> is bypassed by the formation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="70b59f3c967a9fdfb72e0945b1f97c3d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00013.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00013.png"/></svg:svg></span></span>, which reacts with <span class="inline-formula">HNO<sub>3</sub></span> to form, for example, iodic acid and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="4b63ac2ccaf7dd01277385a46736260c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00014.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00014.png"/></svg:svg></span></span>. The ozone and humidity dependence of the detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="335a219683ee8afed0badec468c9a644"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00015.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00015.png"/></svg:svg></span></span> 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which good agreement with measurements of the <span class="inline-formula">I<sup>−</sup></span>(<span class="inline-formula">HNO<sub>3</sub></span>) cluster ion (specific for <span class="inline-formula">HNO<sub>3</sub></span> detection) was obtained. At high ozone mixing ratios, we show that the concentration of <span class="inline-formula">I<sup>−</sup></span> ions in our ion–molecule reactor (IMR) is significantly depleted. This is not reflected by changes in the measured <span class="inline-formula">I<sup>−</sup></span> signal at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eca55b4362726df35abcff0f4a24ff8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00016.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00016.png"/></svg:svg></span></span> 127 as the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f65904c10f6924e431010e2b92b94ed4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00017.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00017.png"/></svg:svg></span></span> formed
does not survive passage through the instrument but is likely detected after fragmentation to <span class="inline-formula">I<sup>−</sup></span>. This may result in a bias in measurements of trace gases using I-CIMS in stratospheric air masses unless a calibration gas is
continuously added or the impact of <span class="inline-formula">O<sub>3</sub></span> on sensitivity is characterised.</p> |
url |
https://amt.copernicus.org/articles/14/5319/2021/amt-14-5319-2021.pdf |
work_keys_str_mv |
AT rdorich iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone AT peger iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone AT jlelieveld iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone AT jncrowley iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone |
_version_ |
1721223198196891648 |
spelling |
doaj-2056adeb25d749fcaa4ee6cf1581d5f82021-08-03T11:55:11ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-08-01145319533210.5194/amt-14-5319-2021Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozoneR. DörichP. EgerJ. LelieveldJ. N. Crowley<p>Chemical ionisation mass spectrometry (CIMS) using <span class="inline-formula">I<sup>−</sup></span> (the iodide anion), hereafter I-CIMS, as a primary reactant ion has previously been used to measure <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> both in laboratory and field experiments. We show that reports of large daytime mixing ratios of <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> (both usually present in detectable amounts only at night) are likely to be heavily biased by the ubiquitous presence of <span class="inline-formula">HNO<sub>3</sub></span> in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="279239c08ce5ed5dd0fbeb16cbabd960"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00006.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00006.png"/></svg:svg></span></span> 62 using <span class="inline-formula">I<sup>−</sup></span> ions is efficient in the presence of peroxy acetyl nitric anhydride (PAN) or peroxyacetic acid (PAA) and especially <span class="inline-formula">O<sub>3</sub></span>. We have characterised the dependence of the sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> detection on the presence of acetate anions (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="12116abfd19a39506a0d5a640e4eaefd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00007.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00007.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7dc7cb769bb742b7e5caf4e3949b8538"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00008.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00008.png"/></svg:svg></span></span> 59, from either PAN or PAA). The loss of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fb6d8d7a7419664dbb3edfa51feb3cdd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00009.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00009.png"/></svg:svg></span></span> via conversion to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c3a4747f2c8783874abb0846591684f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00010.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00010.png"/></svg:svg></span></span> in the presence of <span class="inline-formula">HNO<sub>3</sub></span> may represent a significant bias in I-CIMS measurements of PAN and PAA in which continuous calibration (e.g. via addition of isotopically labelled PAN) is not carried out. The greatest sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0d76c8bd8de2f967436a9f4b1d52f77e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00011.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00011.png"/></svg:svg></span></span> 62 is achieved in the presence of ambient levels of <span class="inline-formula">O<sub>3</sub></span> whereby the thermodynamically disfavoured, direct reaction of <span class="inline-formula">I<sup>−</sup></span> with <span class="inline-formula">HNO<sub>3</sub></span> to form <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="91231030ab72dfd8d13e6de2d14574f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00012.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00012.png"/></svg:svg></span></span> is bypassed by the formation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="70b59f3c967a9fdfb72e0945b1f97c3d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00013.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00013.png"/></svg:svg></span></span>, which reacts with <span class="inline-formula">HNO<sub>3</sub></span> to form, for example, iodic acid and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="4b63ac2ccaf7dd01277385a46736260c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00014.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00014.png"/></svg:svg></span></span>. The ozone and humidity dependence of the detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="335a219683ee8afed0badec468c9a644"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00015.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00015.png"/></svg:svg></span></span> 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which good agreement with measurements of the <span class="inline-formula">I<sup>−</sup></span>(<span class="inline-formula">HNO<sub>3</sub></span>) cluster ion (specific for <span class="inline-formula">HNO<sub>3</sub></span> detection) was obtained. At high ozone mixing ratios, we show that the concentration of <span class="inline-formula">I<sup>−</sup></span> ions in our ion–molecule reactor (IMR) is significantly depleted. This is not reflected by changes in the measured <span class="inline-formula">I<sup>−</sup></span> signal at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eca55b4362726df35abcff0f4a24ff8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00016.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00016.png"/></svg:svg></span></span> 127 as the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f65904c10f6924e431010e2b92b94ed4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00017.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00017.png"/></svg:svg></span></span> formed does not survive passage through the instrument but is likely detected after fragmentation to <span class="inline-formula">I<sup>−</sup></span>. This may result in a bias in measurements of trace gases using I-CIMS in stratospheric air masses unless a calibration gas is continuously added or the impact of <span class="inline-formula">O<sub>3</sub></span> on sensitivity is characterised.</p>https://amt.copernicus.org/articles/14/5319/2021/amt-14-5319-2021.pdf |