Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone

<p>Chemical ionisation mass spectrometry (CIMS) using <span class="inline-formula">I<sup>−</sup></span> (the iodide anion), hereafter I-CIMS, as a primary reactant ion has previously been used to measure <span class="inline-formula">NO<sub&...

Full description

Bibliographic Details
Main Authors: R. Dörich, P. Eger, J. Lelieveld, J. N. Crowley
Format: Article
Language:English
Published: Copernicus Publications 2021-08-01
Series:Atmospheric Measurement Techniques
Online Access:https://amt.copernicus.org/articles/14/5319/2021/amt-14-5319-2021.pdf
id doaj-2056adeb25d749fcaa4ee6cf1581d5f8
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author R. Dörich
P. Eger
J. Lelieveld
J. N. Crowley
spellingShingle R. Dörich
P. Eger
J. Lelieveld
J. N. Crowley
Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
Atmospheric Measurement Techniques
author_facet R. Dörich
P. Eger
J. Lelieveld
J. N. Crowley
author_sort R. Dörich
title Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
title_short Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
title_full Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
title_fullStr Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
title_full_unstemmed Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozone
title_sort iodide cims and <i>m</i>∕<i>z</i> 62: the detection of hno<sub>3</sub> as no<sub>3</sub><sup>−</sup> in the presence of pan, peroxyacetic acid and ozone
publisher Copernicus Publications
series Atmospheric Measurement Techniques
issn 1867-1381
1867-8548
publishDate 2021-08-01
description <p>Chemical ionisation mass spectrometry (CIMS) using <span class="inline-formula">I<sup>−</sup></span> (the iodide anion), hereafter I-CIMS, as a primary reactant ion has previously been used to measure <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> both in laboratory and field experiments. We show that reports of large daytime mixing ratios of <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> (both usually present in detectable amounts only at night) are likely to be heavily biased by the ubiquitous presence of <span class="inline-formula">HNO<sub>3</sub></span> in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="279239c08ce5ed5dd0fbeb16cbabd960"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00006.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00006.png"/></svg:svg></span></span> 62 using <span class="inline-formula">I<sup>−</sup></span> ions is efficient in the presence of peroxy acetyl nitric anhydride (PAN) or peroxyacetic acid (PAA) and especially <span class="inline-formula">O<sub>3</sub></span>. We have characterised the dependence of the sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> detection on the presence of acetate anions (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="12116abfd19a39506a0d5a640e4eaefd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00007.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00007.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7dc7cb769bb742b7e5caf4e3949b8538"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00008.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00008.png"/></svg:svg></span></span> 59, from either PAN or PAA). The loss of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fb6d8d7a7419664dbb3edfa51feb3cdd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00009.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00009.png"/></svg:svg></span></span> via conversion to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c3a4747f2c8783874abb0846591684f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00010.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00010.png"/></svg:svg></span></span> in the presence of <span class="inline-formula">HNO<sub>3</sub></span> may represent a significant bias in I-CIMS measurements of PAN and PAA in which continuous calibration (e.g. via addition of isotopically labelled PAN) is not carried out. The greatest sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0d76c8bd8de2f967436a9f4b1d52f77e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00011.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00011.png"/></svg:svg></span></span> 62 is achieved in the presence of ambient levels of <span class="inline-formula">O<sub>3</sub></span> whereby the thermodynamically disfavoured, direct reaction of <span class="inline-formula">I<sup>−</sup></span> with <span class="inline-formula">HNO<sub>3</sub></span> to form <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="91231030ab72dfd8d13e6de2d14574f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00012.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00012.png"/></svg:svg></span></span> is bypassed by the formation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="70b59f3c967a9fdfb72e0945b1f97c3d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00013.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00013.png"/></svg:svg></span></span>, which reacts with <span class="inline-formula">HNO<sub>3</sub></span> to form, for example, iodic acid and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="4b63ac2ccaf7dd01277385a46736260c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00014.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00014.png"/></svg:svg></span></span>. The ozone and humidity dependence of the detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="335a219683ee8afed0badec468c9a644"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00015.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00015.png"/></svg:svg></span></span> 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which good agreement with measurements of the <span class="inline-formula">I<sup>−</sup></span>(<span class="inline-formula">HNO<sub>3</sub></span>) cluster ion (specific for <span class="inline-formula">HNO<sub>3</sub></span> detection) was obtained. At high ozone mixing ratios, we show that the concentration of <span class="inline-formula">I<sup>−</sup></span> ions in our ion–molecule reactor (IMR) is significantly depleted. This is not reflected by changes in the measured <span class="inline-formula">I<sup>−</sup></span> signal at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eca55b4362726df35abcff0f4a24ff8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00016.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00016.png"/></svg:svg></span></span> 127 as the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f65904c10f6924e431010e2b92b94ed4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00017.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00017.png"/></svg:svg></span></span> formed does not survive passage through the instrument but is likely detected after fragmentation to <span class="inline-formula">I<sup>−</sup></span>. This may result in a bias in measurements of trace gases using I-CIMS in stratospheric air masses unless a calibration gas is continuously added or the impact of <span class="inline-formula">O<sub>3</sub></span> on sensitivity is characterised.</p>
url https://amt.copernicus.org/articles/14/5319/2021/amt-14-5319-2021.pdf
work_keys_str_mv AT rdorich iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone
AT peger iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone
AT jlelieveld iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone
AT jncrowley iodidecimsandimiizi62thedetectionofhnosub3subasnosub3subsupsupinthepresenceofpanperoxyaceticacidandozone
_version_ 1721223198196891648
spelling doaj-2056adeb25d749fcaa4ee6cf1581d5f82021-08-03T11:55:11ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-08-01145319533210.5194/amt-14-5319-2021Iodide CIMS and <i>m</i>∕<i>z</i> 62: the detection of HNO<sub>3</sub> as NO<sub>3</sub><sup>−</sup> in the presence of PAN, peroxyacetic acid and ozoneR. DörichP. EgerJ. LelieveldJ. N. Crowley<p>Chemical ionisation mass spectrometry (CIMS) using <span class="inline-formula">I<sup>−</sup></span> (the iodide anion), hereafter I-CIMS, as a primary reactant ion has previously been used to measure <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> both in laboratory and field experiments. We show that reports of large daytime mixing ratios of <span class="inline-formula">NO<sub>3</sub></span> and <span class="inline-formula">N<sub>2</sub>O<sub>5</sub></span> (both usually present in detectable amounts only at night) are likely to be heavily biased by the ubiquitous presence of <span class="inline-formula">HNO<sub>3</sub></span> in the troposphere and lower stratosphere. We demonstrate in a series of laboratory experiments that the CIMS detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M13" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="279239c08ce5ed5dd0fbeb16cbabd960"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00006.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00006.png"/></svg:svg></span></span> 62 using <span class="inline-formula">I<sup>−</sup></span> ions is efficient in the presence of peroxy acetyl nitric anhydride (PAN) or peroxyacetic acid (PAA) and especially <span class="inline-formula">O<sub>3</sub></span>. We have characterised the dependence of the sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> detection on the presence of acetate anions (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="12116abfd19a39506a0d5a640e4eaefd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00007.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00007.png"/></svg:svg></span></span>, <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M18" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="7dc7cb769bb742b7e5caf4e3949b8538"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00008.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00008.png"/></svg:svg></span></span> 59, from either PAN or PAA). The loss of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">CH</mi><mn mathvariant="normal">3</mn></msub><msup><msub><mi mathvariant="normal">CO</mi><mn mathvariant="normal">2</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="51pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="fb6d8d7a7419664dbb3edfa51feb3cdd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00009.svg" width="51pt" height="15pt" src="amt-14-5319-2021-ie00009.png"/></svg:svg></span></span> via conversion to <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M20" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="c3a4747f2c8783874abb0846591684f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00010.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00010.png"/></svg:svg></span></span> in the presence of <span class="inline-formula">HNO<sub>3</sub></span> may represent a significant bias in I-CIMS measurements of PAN and PAA in which continuous calibration (e.g. via addition of isotopically labelled PAN) is not carried out. The greatest sensitivity to <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M23" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="0d76c8bd8de2f967436a9f4b1d52f77e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00011.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00011.png"/></svg:svg></span></span> 62 is achieved in the presence of ambient levels of <span class="inline-formula">O<sub>3</sub></span> whereby the thermodynamically disfavoured, direct reaction of <span class="inline-formula">I<sup>−</sup></span> with <span class="inline-formula">HNO<sub>3</sub></span> to form <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M27" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="91231030ab72dfd8d13e6de2d14574f5"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00012.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00012.png"/></svg:svg></span></span> is bypassed by the formation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M28" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="70b59f3c967a9fdfb72e0945b1f97c3d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00013.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00013.png"/></svg:svg></span></span>, which reacts with <span class="inline-formula">HNO<sub>3</sub></span> to form, for example, iodic acid and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M30" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">NO</mi><mn mathvariant="normal">3</mn></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="30pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="4b63ac2ccaf7dd01277385a46736260c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00014.svg" width="30pt" height="15pt" src="amt-14-5319-2021-ie00014.png"/></svg:svg></span></span>. The ozone and humidity dependence of the detection of <span class="inline-formula">HNO<sub>3</sub></span> at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M32" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="335a219683ee8afed0badec468c9a644"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00015.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00015.png"/></svg:svg></span></span> 62 was characterised in laboratory experiments and applied to daytime, airborne measurements in which good agreement with measurements of the <span class="inline-formula">I<sup>−</sup></span>(<span class="inline-formula">HNO<sub>3</sub></span>) cluster ion (specific for <span class="inline-formula">HNO<sub>3</sub></span> detection) was obtained. At high ozone mixing ratios, we show that the concentration of <span class="inline-formula">I<sup>−</sup></span> ions in our ion–molecule reactor (IMR) is significantly depleted. This is not reflected by changes in the measured <span class="inline-formula">I<sup>−</sup></span> signal at <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M38" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="eca55b4362726df35abcff0f4a24ff8d"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00016.svg" width="23pt" height="14pt" src="amt-14-5319-2021-ie00016.png"/></svg:svg></span></span> 127 as the <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M39" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msup><msub><mi mathvariant="normal">IO</mi><mi>x</mi></msub><mo>-</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="26pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="f65904c10f6924e431010e2b92b94ed4"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-5319-2021-ie00017.svg" width="26pt" height="14pt" src="amt-14-5319-2021-ie00017.png"/></svg:svg></span></span> formed does not survive passage through the instrument but is likely detected after fragmentation to <span class="inline-formula">I<sup>−</sup></span>. This may result in a bias in measurements of trace gases using I-CIMS in stratospheric air masses unless a calibration gas is continuously added or the impact of <span class="inline-formula">O<sub>3</sub></span> on sensitivity is characterised.</p>https://amt.copernicus.org/articles/14/5319/2021/amt-14-5319-2021.pdf