<italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection

The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work d...

Full description

Bibliographic Details
Main Authors: Himar Fabelo, Samuel Ortega, Adam Szolna, Diederik Bulters, Juan F. Pineiro, Silvester Kabwama, Aruma J-O'Shanahan, Harry Bulstrode, Sara Bisshopp, B. Ravi Kiran, Daniele Ravi, Raquel Lazcano, Daniel Madronal, Coralia Sosa, Carlos Espino, Mariano Marquez, Maria De La Luz Plaza, Rafael Camacho, David Carrera, Maria Hernandez, Gustavo M. Callico, Jesus Morera Molina, Bogdan Stanciulescu, Guang-Zhong Yang, Ruben Salvador Perea, Eduardo Juarez, Cesar Sanz, Roberto Sarmiento
Format: Article
Language:English
Published: IEEE 2019-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8667294/
id doaj-217d6dff322d472a81253ca6dd596240
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Himar Fabelo
Samuel Ortega
Adam Szolna
Diederik Bulters
Juan F. Pineiro
Silvester Kabwama
Aruma J-O'Shanahan
Harry Bulstrode
Sara Bisshopp
B. Ravi Kiran
Daniele Ravi
Raquel Lazcano
Daniel Madronal
Coralia Sosa
Carlos Espino
Mariano Marquez
Maria De La Luz Plaza
Rafael Camacho
David Carrera
Maria Hernandez
Gustavo M. Callico
Jesus Morera Molina
Bogdan Stanciulescu
Guang-Zhong Yang
Ruben Salvador Perea
Eduardo Juarez
Cesar Sanz
Roberto Sarmiento
spellingShingle Himar Fabelo
Samuel Ortega
Adam Szolna
Diederik Bulters
Juan F. Pineiro
Silvester Kabwama
Aruma J-O'Shanahan
Harry Bulstrode
Sara Bisshopp
B. Ravi Kiran
Daniele Ravi
Raquel Lazcano
Daniel Madronal
Coralia Sosa
Carlos Espino
Mariano Marquez
Maria De La Luz Plaza
Rafael Camacho
David Carrera
Maria Hernandez
Gustavo M. Callico
Jesus Morera Molina
Bogdan Stanciulescu
Guang-Zhong Yang
Ruben Salvador Perea
Eduardo Juarez
Cesar Sanz
Roberto Sarmiento
<italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection
IEEE Access
Hyperspectral imaging
cancer detection
biomedical imaging
medical diagnostic imaging
image databases
author_facet Himar Fabelo
Samuel Ortega
Adam Szolna
Diederik Bulters
Juan F. Pineiro
Silvester Kabwama
Aruma J-O'Shanahan
Harry Bulstrode
Sara Bisshopp
B. Ravi Kiran
Daniele Ravi
Raquel Lazcano
Daniel Madronal
Coralia Sosa
Carlos Espino
Mariano Marquez
Maria De La Luz Plaza
Rafael Camacho
David Carrera
Maria Hernandez
Gustavo M. Callico
Jesus Morera Molina
Bogdan Stanciulescu
Guang-Zhong Yang
Ruben Salvador Perea
Eduardo Juarez
Cesar Sanz
Roberto Sarmiento
author_sort Himar Fabelo
title <italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection
title_short <italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection
title_full <italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection
title_fullStr <italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection
title_full_unstemmed <italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer Detection
title_sort <italic>in-vivo</italic> hyperspectral human brain image database for brain cancer detection
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2019-01-01
description The use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository.
topic Hyperspectral imaging
cancer detection
biomedical imaging
medical diagnostic imaging
image databases
url https://ieeexplore.ieee.org/document/8667294/
work_keys_str_mv AT himarfabelo italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT samuelortega italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT adamszolna italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT diederikbulters italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT juanfpineiro italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT silvesterkabwama italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT arumajoshanahan italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT harrybulstrode italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT sarabisshopp italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT bravikiran italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT danieleravi italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT raquellazcano italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT danielmadronal italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT coraliasosa italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT carlosespino italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT marianomarquez italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT mariadelaluzplaza italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT rafaelcamacho italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT davidcarrera italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT mariahernandez italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT gustavomcallico italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT jesusmoreramolina italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT bogdanstanciulescu italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT guangzhongyang italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT rubensalvadorperea italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT eduardojuarez italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT cesarsanz italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
AT robertosarmiento italicinvivoitalichyperspectralhumanbrainimagedatabaseforbraincancerdetection
_version_ 1721540449576943616
spelling doaj-217d6dff322d472a81253ca6dd5962402021-04-05T17:00:38ZengIEEEIEEE Access2169-35362019-01-017390983911610.1109/ACCESS.2019.29047888667294<italic>In-Vivo</italic> Hyperspectral Human Brain Image Database for Brain Cancer DetectionHimar Fabelo0https://orcid.org/0000-0002-9794-490XSamuel Ortega1https://orcid.org/0000-0002-7519-954XAdam Szolna2Diederik Bulters3Juan F. Pineiro4Silvester Kabwama5Aruma J-O'Shanahan6Harry Bulstrode7Sara Bisshopp8B. Ravi Kiran9Daniele Ravi10Raquel Lazcano11Daniel Madronal12Coralia Sosa13Carlos Espino14Mariano Marquez15Maria De La Luz Plaza16Rafael Camacho17David Carrera18Maria Hernandez19Gustavo M. Callico20https://orcid.org/0000-0002-3784-5504Jesus Morera Molina21Bogdan Stanciulescu22Guang-Zhong Yang23Ruben Salvador Perea24https://orcid.org/0000-0002-0021-5808Eduardo Juarez25Cesar Sanz26Roberto Sarmiento27Institute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, SpainInstitute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainWessex Neurological Centre, University Hospital Southampton, Southampton, U.K.Department of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainWessex Neurological Centre, University Hospital Southampton, Southampton, U.K.Department of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, Addenbrookes Hospital, University of Cambridge, Cambridge, U.K.Department of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainAutonomous Systems, AKKA Technologies, Paris, FranceThe Hamlyn Centre, Imperial College London, London, U.K.Centre of Software Technologies and Multimedia Systems, Universidad Polit&#x00E9;cnica de Madrid, Madrid, SpainCentre of Software Technologies and Multimedia Systems, Universidad Polit&#x00E9;cnica de Madrid, Madrid, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Pathological Anatomy, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Pathological Anatomy, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainInstitute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, SpainDepartment of Neurosurgery, University Hospital Doctor Negrin, Las Palmas de Gran Canaria, SpainEcole Nationale Supérieure des Mines de Paris, MINES ParisTech, Paris, FranceThe Hamlyn Centre, Imperial College London, London, U.K.Centre of Software Technologies and Multimedia Systems, Universidad Polit&#x00E9;cnica de Madrid, Madrid, SpainCentre of Software Technologies and Multimedia Systems, Universidad Polit&#x00E9;cnica de Madrid, Madrid, SpainCentre of Software Technologies and Multimedia Systems, Universidad Polit&#x00E9;cnica de Madrid, Madrid, SpainInstitute for Applied Microelectronics, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, SpainThe use of hyperspectral imaging for medical applications is becoming more common in recent years. One of the main obstacles that researchers find when developing hyperspectral algorithms for medical applications is the lack of specific, publicly available, and hyperspectral medical data. The work described in this paper was developed within the framework of the European project HELICoiD (HypErspectraL Imaging Cancer Detection), which had as a main goal the application of hyperspectral imaging to the delineation of brain tumors in real-time during neurosurgical operations. In this paper, the methodology followed to generate the first hyperspectral database of in-vivo human brain tissues is presented. Data was acquired employing a customized hyperspectral acquisition system capable of capturing information in the Visual and Near InfraRed (VNIR) range from 400 to 1000 nm. Repeatability was assessed for the cases where two images of the same scene were captured consecutively. The analysis reveals that the system works more efficiently in the spectral range between 450 and 900 nm. A total of 36 hyperspectral images from 22 different patients were obtained. From these data, more than 300 000 spectral signatures were labeled employing a semi-automatic methodology based on the spectral angle mapper algorithm. Four different classes were defined: normal tissue, tumor tissue, blood vessel, and background elements. All the hyperspectral data has been made available in a public repository.https://ieeexplore.ieee.org/document/8667294/Hyperspectral imagingcancer detectionbiomedical imagingmedical diagnostic imagingimage databases