Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations
Snow surface spectral reflectance is very important in the Earth’s climate system. Traditional land surface models with parameterized schemes can simulate broadband snow surface albedo but cannot accurately simulate snow surface spectral reflectance with continuous and fine spectral wavebands, which...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-09-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/12/18/3101 |
id |
doaj-217ef2eb4aab431fb8b6335672e7a6ec |
---|---|
record_format |
Article |
spelling |
doaj-217ef2eb4aab431fb8b6335672e7a6ec2020-11-25T03:35:02ZengMDPI AGRemote Sensing2072-42922020-09-01123101310110.3390/rs12183101Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing ObservationsDonghang Shao0Wenbo Xu1Hongyi Li2Jian Wang3Xiaohua Hao4School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, ChinaSchool of Resources and Environment, University of Electronic Science and Technology of China, Chengdu 611731, ChinaNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaNorthwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, ChinaSnow surface spectral reflectance is very important in the Earth’s climate system. Traditional land surface models with parameterized schemes can simulate broadband snow surface albedo but cannot accurately simulate snow surface spectral reflectance with continuous and fine spectral wavebands, which constitute the major observations of current satellite sensors; consequently, there is an obvious gap between land surface model simulations and remote sensing observations. Here, we suggest a new integrated scheme that couples a radiative transfer model with a land surface model to simulate high spectral resolution snow surface reflectance information specifically targeting multisource satellite remote sensing observations. Our results indicate that the new integrated model can accurately simulate snow surface reflectance information over a large spatial scale and continuous time series. The integrated model extends the range of snow spectral reflectance simulation to the whole shortwave band and can predict snow spectral reflectance changes in the solar spectrum region based on meteorological element data. The kappa coefficients (K) of both the narrowband snow albedo targeting Moderate Resolution Imaging Spectroradiometer (MODIS) data simulated by the new integrated model and the retrieved snow albedo based on MODIS reflectance data are 0.5, and both exhibit good spatial consistency. Our proposed narrowband snow albedo simulation scheme targeting satellite remote sensing observations is consistent with remote sensing satellite observations in time series and can predict narrowband snow albedo even during periods of missing remote sensing observations. This new integrated model is a significant improvement over traditional land surface models for the direct spectral observations of satellite remote sensing. The proposed model could contribute to the effective combination of snow surface reflectance information from multisource remote sensing observations with land surface models.https://www.mdpi.com/2072-4292/12/18/3101snow albedosnow spectral albedointegrated modelsatellite remote sensing |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Donghang Shao Wenbo Xu Hongyi Li Jian Wang Xiaohua Hao |
spellingShingle |
Donghang Shao Wenbo Xu Hongyi Li Jian Wang Xiaohua Hao Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations Remote Sensing snow albedo snow spectral albedo integrated model satellite remote sensing |
author_facet |
Donghang Shao Wenbo Xu Hongyi Li Jian Wang Xiaohua Hao |
author_sort |
Donghang Shao |
title |
Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations |
title_short |
Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations |
title_full |
Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations |
title_fullStr |
Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations |
title_full_unstemmed |
Modeling Snow Surface Spectral Reflectance in a Land Surface Model Targeting Satellite Remote Sensing Observations |
title_sort |
modeling snow surface spectral reflectance in a land surface model targeting satellite remote sensing observations |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2020-09-01 |
description |
Snow surface spectral reflectance is very important in the Earth’s climate system. Traditional land surface models with parameterized schemes can simulate broadband snow surface albedo but cannot accurately simulate snow surface spectral reflectance with continuous and fine spectral wavebands, which constitute the major observations of current satellite sensors; consequently, there is an obvious gap between land surface model simulations and remote sensing observations. Here, we suggest a new integrated scheme that couples a radiative transfer model with a land surface model to simulate high spectral resolution snow surface reflectance information specifically targeting multisource satellite remote sensing observations. Our results indicate that the new integrated model can accurately simulate snow surface reflectance information over a large spatial scale and continuous time series. The integrated model extends the range of snow spectral reflectance simulation to the whole shortwave band and can predict snow spectral reflectance changes in the solar spectrum region based on meteorological element data. The kappa coefficients (K) of both the narrowband snow albedo targeting Moderate Resolution Imaging Spectroradiometer (MODIS) data simulated by the new integrated model and the retrieved snow albedo based on MODIS reflectance data are 0.5, and both exhibit good spatial consistency. Our proposed narrowband snow albedo simulation scheme targeting satellite remote sensing observations is consistent with remote sensing satellite observations in time series and can predict narrowband snow albedo even during periods of missing remote sensing observations. This new integrated model is a significant improvement over traditional land surface models for the direct spectral observations of satellite remote sensing. The proposed model could contribute to the effective combination of snow surface reflectance information from multisource remote sensing observations with land surface models. |
topic |
snow albedo snow spectral albedo integrated model satellite remote sensing |
url |
https://www.mdpi.com/2072-4292/12/18/3101 |
work_keys_str_mv |
AT donghangshao modelingsnowsurfacespectralreflectanceinalandsurfacemodeltargetingsatelliteremotesensingobservations AT wenboxu modelingsnowsurfacespectralreflectanceinalandsurfacemodeltargetingsatelliteremotesensingobservations AT hongyili modelingsnowsurfacespectralreflectanceinalandsurfacemodeltargetingsatelliteremotesensingobservations AT jianwang modelingsnowsurfacespectralreflectanceinalandsurfacemodeltargetingsatelliteremotesensingobservations AT xiaohuahao modelingsnowsurfacespectralreflectanceinalandsurfacemodeltargetingsatelliteremotesensingobservations |
_version_ |
1724555966506074112 |