An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps

This paper proposes a new four-dimensional hyperchaotic map based on the Rabinovich system to realize chaotic encryption in higher dimension and improve the security. The chaotic sequences generated by Runge-Kutta method are combined with the chaotic sequences generated by an exponential chaos map t...

Full description

Bibliographic Details
Main Authors: Xiaojun Tong, Yang Liu, Miao Zhang, Hui Xu, Zhu Wang
Format: Article
Language:English
Published: MDPI AG 2015-01-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/17/1/181
Description
Summary:This paper proposes a new four-dimensional hyperchaotic map based on the Rabinovich system to realize chaotic encryption in higher dimension and improve the security. The chaotic sequences generated by Runge-Kutta method are combined with the chaotic sequences generated by an exponential chaos map to generate key sequences. The key sequences are used for image encryption. The security test results indicate that the new hyperchaotic system has high security and complexity. The comparison between the new hyperchaotic system and the several low-dimensional chaotic systems shows that the proposed system performs more efficiently.
ISSN:1099-4300