Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace
Abstract Crowdsourcing has significantly motivated the development of meteorological services. Starting from the beginning of 2010s and highly motivating after 2014, crowdsourcing‐driven meteorological services have evolved from a single collection and observation of data to the systematic acquisiti...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-06-01
|
Series: | Geoscience Data Journal |
Subjects: | |
Online Access: | https://doi.org/10.1002/gdj3.85 |
id |
doaj-21c58fccd6d24d09b4c56eb83dff4bea |
---|---|
record_format |
Article |
spelling |
doaj-21c58fccd6d24d09b4c56eb83dff4bea2021-08-02T13:31:25ZengWileyGeoscience Data Journal2049-60602020-06-0171617910.1002/gdj3.85Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspaceYifan Zhu0Sifan Zhang1Yinan Li2Hao Lu3Kaize Shi4Zhendong Niu5School of Computer Science & Technology Beijing Institute of Technology Beijing ChinaSchool of Computer Science & Technology Beijing Institute of Technology Beijing ChinaSchool of Computer Science & Technology Beijing Institute of Technology Beijing ChinaSchool of Computer Science & Technology Beijing Institute of Technology Beijing ChinaSchool of Computer Science & Technology Beijing Institute of Technology Beijing ChinaSchool of Computer Science & Technology Beijing Institute of Technology Beijing ChinaAbstract Crowdsourcing has significantly motivated the development of meteorological services. Starting from the beginning of 2010s and highly motivating after 2014, crowdsourcing‐driven meteorological services have evolved from a single collection and observation of data to the systematic acquisition, analysis and application of these data. In this review, by focusing on papers and databases that have combined crowdsourcing methods to promote or implement meteorological knowledge services, we analysed the relevant literature in three dimensions: data collection, information analysis and meteorological knowledge applications. First, we selected the potential data sources for crowdsourcing and discussed the characteristics of the collected data in four dimensions: consciousness, objectiveness, mobility and multidisciplinary. Second, based on the purpose of these studies and the extent of utilizing data as well as knowledge, we categorize the crowdsourcing‐based meteorological analysis into three levels: relationship discovery, knowledge generalization and systemized service. Third, according to the application scenario, we discussed the applications that have already been put into use, and we suggest current challenges and future research directions. These previous studies show that the use of crowdsourcing in social space can expand the coverage as well as enhance the performance of meteorological service. It was also evident that current researches are contributing towards a systemic and intelligent knowledge service to establish a better bridge among academic, industrial and individual community.https://doi.org/10.1002/gdj3.85crowdsourcingdata‐drivenknowledge servicesmeteorological servicessocial space |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yifan Zhu Sifan Zhang Yinan Li Hao Lu Kaize Shi Zhendong Niu |
spellingShingle |
Yifan Zhu Sifan Zhang Yinan Li Hao Lu Kaize Shi Zhendong Niu Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace Geoscience Data Journal crowdsourcing data‐driven knowledge services meteorological services social space |
author_facet |
Yifan Zhu Sifan Zhang Yinan Li Hao Lu Kaize Shi Zhendong Niu |
author_sort |
Yifan Zhu |
title |
Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace |
title_short |
Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace |
title_full |
Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace |
title_fullStr |
Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace |
title_full_unstemmed |
Social weather: A review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace |
title_sort |
social weather: a review of crowdsourcing‐assisted meteorological knowledge services through social cyberspace |
publisher |
Wiley |
series |
Geoscience Data Journal |
issn |
2049-6060 |
publishDate |
2020-06-01 |
description |
Abstract Crowdsourcing has significantly motivated the development of meteorological services. Starting from the beginning of 2010s and highly motivating after 2014, crowdsourcing‐driven meteorological services have evolved from a single collection and observation of data to the systematic acquisition, analysis and application of these data. In this review, by focusing on papers and databases that have combined crowdsourcing methods to promote or implement meteorological knowledge services, we analysed the relevant literature in three dimensions: data collection, information analysis and meteorological knowledge applications. First, we selected the potential data sources for crowdsourcing and discussed the characteristics of the collected data in four dimensions: consciousness, objectiveness, mobility and multidisciplinary. Second, based on the purpose of these studies and the extent of utilizing data as well as knowledge, we categorize the crowdsourcing‐based meteorological analysis into three levels: relationship discovery, knowledge generalization and systemized service. Third, according to the application scenario, we discussed the applications that have already been put into use, and we suggest current challenges and future research directions. These previous studies show that the use of crowdsourcing in social space can expand the coverage as well as enhance the performance of meteorological service. It was also evident that current researches are contributing towards a systemic and intelligent knowledge service to establish a better bridge among academic, industrial and individual community. |
topic |
crowdsourcing data‐driven knowledge services meteorological services social space |
url |
https://doi.org/10.1002/gdj3.85 |
work_keys_str_mv |
AT yifanzhu socialweatherareviewofcrowdsourcingassistedmeteorologicalknowledgeservicesthroughsocialcyberspace AT sifanzhang socialweatherareviewofcrowdsourcingassistedmeteorologicalknowledgeservicesthroughsocialcyberspace AT yinanli socialweatherareviewofcrowdsourcingassistedmeteorologicalknowledgeservicesthroughsocialcyberspace AT haolu socialweatherareviewofcrowdsourcingassistedmeteorologicalknowledgeservicesthroughsocialcyberspace AT kaizeshi socialweatherareviewofcrowdsourcingassistedmeteorologicalknowledgeservicesthroughsocialcyberspace AT zhendongniu socialweatherareviewofcrowdsourcingassistedmeteorologicalknowledgeservicesthroughsocialcyberspace |
_version_ |
1721231826206326784 |