Wheat phytase can alleviate the cellular toxic and inflammatory effects of lipopolysaccharide
The objective of this study was to characterize the enzymatic hydrolysis of lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of wheat phytase-treated LPS on in vitro toxicity, cell viability and release of a pro-infl...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Korean Society of Animal Sciences and Technology
2021-01-01
|
Series: | Journal of Animal Science and Technology |
Subjects: | |
Online Access: | http://www.ejast.org/archive/view_article?pid=jast-63-1-114 |
Summary: | The objective of this study was to characterize the enzymatic hydrolysis of
lipopolysaccharide (LPS) by wheat phytase and to investigate the effects of
wheat phytase-treated LPS on in vitro toxicity, cell viability
and release of a pro-inflammatory cytokine, interleukin (IL)-8 by target cells
compared with the intact LPS. The phosphatase activity of wheat phytase towards
LPS was investigated in the presence or absence of inhibitors such as
L-phenylalanine and L-homoarginine. In vitro toxicity of LPS
hydrolyzed with wheat phytase in comparison to intact LPS was assessed. Cell
viability in human aortic endothelial (HAE) cells exposed to LPS treated with
wheat phytase in comparison to intact LPS was measured. The release of IL-8 in
human intestinal epithelial cell line, HT-29 cells applied to LPS treated with
wheat phytase in comparison to intact LPS was assayed. Wheat phytase hydrolyzed
LPS, resulting in a significant release of inorganic phosphate for 1 h
(p < 0.05). Furthermore, the degradation of LPS by
wheat phytase was nearly unaffected by the addition of L-phenylalanine, the
inhibitor of tissue-specific alkaline phosphatase or L-homoarginine, the
inhibitor of tissue-non-specific alkaline phosphatase. Wheat phytase effectively
reduced the in vitro toxicity of LPS, resulting in a retention
of 63% and 54% of its initial toxicity after 1–3 h of the enzyme
reaction, respectively (p < 0.05). Intact LPS decreased
the cell viability of HAE cells. However, LPS dephosphorylated by wheat phytase
counteracted the inhibitory effect on cell viability. LPS treated with wheat
phytase decreased IL-8 secretion from intestinal epithelial cell line, HT-29
cell to 14% (p < 0.05) when compared with intact LPS. In
conclusion, wheat phytase is a potential therapeutic candidate and prophylactic
agent for control of infections induced by pathogenic Gram-negative bacteria and
associated LPS-mediated inflammatory diseases in animal husbandry. |
---|---|
ISSN: | 2672-0191 2055-0391 |