A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence

A viscoelastic turbulence model in a fully-developed drag reducing channel flow is improved, with turbulent eddies modelled under a <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow>...

Full description

Bibliographic Details
Main Authors: Michael McDermott, Pedro Resende, Thibaut Charpentier, Mark Wilson, Alexandre Afonso, David Harbottle, Gregory de Boer
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/22/8140
id doaj-2270d41cfa854dbaa3d8b0aeedae87ac
record_format Article
spelling doaj-2270d41cfa854dbaa3d8b0aeedae87ac2020-11-25T04:10:04ZengMDPI AGApplied Sciences2076-34172020-11-01108140814010.3390/app10228140A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity DependenceMichael McDermott0Pedro Resende1Thibaut Charpentier2Mark Wilson3Alexandre Afonso4David Harbottle5Gregory de Boer6School of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UKProMetheus, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, PortugalBaker Hughes, Kirkby Bank Road, Knowsley Industrial Park, Liverpool L33 7EU, UKSchool of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UKTransport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Roberto Frais s/n, 4200-465 Porto, PortugalSchool of Chemical and Process Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UKSchool of Mechanical Engineering, University of Leeds, Woodhouse, Leeds LS2 9JT, UKA viscoelastic turbulence model in a fully-developed drag reducing channel flow is improved, with turbulent eddies modelled under a <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></semantics></math></inline-formula> representation, along with polymeric solutions described by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model. The model performance is evaluated against a wide variety of direct numerical simulation data, described by different combinations of rheological parameters, which is able to predict all drag reduction (low, intermediate and high) regimes with good accuracy. Three main contributions are proposed: one with a simplified viscoelastic closure for the <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><mi>L</mi><msub><mi>T</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow></semantics></math></inline-formula> term (which accounts for the interactions between the fluctuating components of the conformation tensor and the velocity gradient tensor), by removing additional damping functions and reducing complexity compared with previous models; second through a reformulation for the closure of the viscoelastic destruction term, <inline-formula><math display="inline"><semantics><msub><mi>E</mi><msub><mi>τ</mi><mi>p</mi></msub></msub></semantics></math></inline-formula>, which removes all friction velocity dependence; lastly by an improved modified damping function capable of predicting the reduction in the eddy viscosity and thus accurately capturing the turbulent kinetic energy throughout the channel. The main advantage is the capacity to predict all flow fields for low, intermediate and high friction Reynolds numbers, up to high drag reduction without friction velocity dependence.https://www.mdpi.com/2076-3417/10/22/8140drag reductionFENE-P fluidviscoelastic RANS modelOpenFoam CFD
collection DOAJ
language English
format Article
sources DOAJ
author Michael McDermott
Pedro Resende
Thibaut Charpentier
Mark Wilson
Alexandre Afonso
David Harbottle
Gregory de Boer
spellingShingle Michael McDermott
Pedro Resende
Thibaut Charpentier
Mark Wilson
Alexandre Afonso
David Harbottle
Gregory de Boer
A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence
Applied Sciences
drag reduction
FENE-P fluid
viscoelastic RANS model
OpenFoam CFD
author_facet Michael McDermott
Pedro Resende
Thibaut Charpentier
Mark Wilson
Alexandre Afonso
David Harbottle
Gregory de Boer
author_sort Michael McDermott
title A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence
title_short A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence
title_full A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence
title_fullStr A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence
title_full_unstemmed A FENE-P <i>k</i>-<i>ε</i> Viscoelastic Turbulence Model Valid up to High Drag Reduction without Friction Velocity Dependence
title_sort fene-p <i>k</i>-<i>ε</i> viscoelastic turbulence model valid up to high drag reduction without friction velocity dependence
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2020-11-01
description A viscoelastic turbulence model in a fully-developed drag reducing channel flow is improved, with turbulent eddies modelled under a <inline-formula><math display="inline"><semantics><mrow><mi>k</mi><mo>−</mo><mi>ε</mi></mrow></semantics></math></inline-formula> representation, along with polymeric solutions described by the finitely extensible nonlinear elastic-Peterlin (FENE-P) constitutive model. The model performance is evaluated against a wide variety of direct numerical simulation data, described by different combinations of rheological parameters, which is able to predict all drag reduction (low, intermediate and high) regimes with good accuracy. Three main contributions are proposed: one with a simplified viscoelastic closure for the <inline-formula><math display="inline"><semantics><mrow><mi>N</mi><mi>L</mi><msub><mi>T</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow></semantics></math></inline-formula> term (which accounts for the interactions between the fluctuating components of the conformation tensor and the velocity gradient tensor), by removing additional damping functions and reducing complexity compared with previous models; second through a reformulation for the closure of the viscoelastic destruction term, <inline-formula><math display="inline"><semantics><msub><mi>E</mi><msub><mi>τ</mi><mi>p</mi></msub></msub></semantics></math></inline-formula>, which removes all friction velocity dependence; lastly by an improved modified damping function capable of predicting the reduction in the eddy viscosity and thus accurately capturing the turbulent kinetic energy throughout the channel. The main advantage is the capacity to predict all flow fields for low, intermediate and high friction Reynolds numbers, up to high drag reduction without friction velocity dependence.
topic drag reduction
FENE-P fluid
viscoelastic RANS model
OpenFoam CFD
url https://www.mdpi.com/2076-3417/10/22/8140
work_keys_str_mv AT michaelmcdermott afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT pedroresende afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT thibautcharpentier afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT markwilson afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT alexandreafonso afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT davidharbottle afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT gregorydeboer afenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT michaelmcdermott fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT pedroresende fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT thibautcharpentier fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT markwilson fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT alexandreafonso fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT davidharbottle fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
AT gregorydeboer fenepikiieiviscoelasticturbulencemodelvaliduptohighdragreductionwithoutfrictionvelocitydependence
_version_ 1724420715149524992