An end-to-end sea fog removal network using multiple scattering model.

An end-to-end sea fog removal network using multiple scattering model was proposed. In this network, the atmospheric multiple scattering model was re-formulated and used for sea fog removal. Compared with the atmospheric single scattering model, the atmospheric multiple scattering model could more c...

Full description

Bibliographic Details
Main Authors: Shunmin An, Xixia Huang, Zhangjing Zheng, Linling Wang
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2021-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0251337
Description
Summary:An end-to-end sea fog removal network using multiple scattering model was proposed. In this network, the atmospheric multiple scattering model was re-formulated and used for sea fog removal. Compared with the atmospheric single scattering model, the atmospheric multiple scattering model could more comprehensively consider the effect of multiple scattering, which was important to the dense fog scenes, such as in ocean scene. Therefore, we used the atmospheric multiple scattering model to avoid image blurring. The model can directly generate the dehazing results, and unify the three parameters of the transmission map, the atmospheric light and the blur kernel into one formula. The latest smooth dilation and sub-pixel techniques were used in the network model. The latest techniques can avoid the gridding artifacts and the halo artifacts, the multi-scale sub-network was used to consider the features of multi-scale. In addition, multiple loss functions were used in end-to-end network. In the experimental results, the model was superior to the state-of-the-art models in terms of quantitatively and qualitatively.
ISSN:1932-6203