A Smart Grid Framework for Optimally Integrating Supply-Side, Demand-Side and Transmission Line Management Systems

A coordinated centralized energy management system (ConCEMS) is presented in this paper that seeks to integrate for optimal grid operation—the supply side energy management system (SSEMS), home energy management system (HEMS) and transmission line management system (TLMS). ConCEMS in ensur...

Full description

Bibliographic Details
Main Authors: Chukwuka Monyei, Serestina Viriri, Aderemi Adewumi, Innocent Davidson, Daniel Akinyele
Format: Article
Language:English
Published: MDPI AG 2018-04-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/5/1038
Description
Summary:A coordinated centralized energy management system (ConCEMS) is presented in this paper that seeks to integrate for optimal grid operation—the supply side energy management system (SSEMS), home energy management system (HEMS) and transmission line management system (TLMS). ConCEMS in ensuring the optimal operation of an IEEE 30-bus electricity network harmonizes the individual objective function of SSEMS, HEMS and TLMS to evolve an optimal dispatch of participating demand response (DR) loads that does not violate transmission line ampacity limits (TLMS constraint) while minimizing consumer cost (HEMS constraint) and supply side operations cost (SSEMS constraint). An externally constrained genetic algorithm (ExC-GA) that is influenced by feedback from TLMS is also presented that intelligently varies the dispatch time of participating DR loads to meet the individual objective functions. Hypothetical day ahead dynamic pricing schemes (Price1, Price2 and Price3) have also been adopted alongside an existing time of use (Price0) pricing scheme for comparison and discussion while a dynamic thermal line rating (DTLR) algorithm has also been incorporated to dynamically compute power limits based on real time associated data.
ISSN:1996-1073