Topiramate treatment is neuroprotective and reduces oligodendrocyte loss after cervical spinal cord injury.

Excess glutamate release and associated neurotoxicity contributes to cell death after spinal cord injury (SCI). Indeed, delayed administration of glutamate receptor antagonists after SCI in rodents improves tissue sparing and functional recovery. Despite their therapeutic potential, most glutamate r...

Full description

Bibliographic Details
Main Authors: John C Gensel, C Amy Tovar, Jacqueline C Bresnahan, Micheal S Beattie
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2012-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3302770?pdf=render
Description
Summary:Excess glutamate release and associated neurotoxicity contributes to cell death after spinal cord injury (SCI). Indeed, delayed administration of glutamate receptor antagonists after SCI in rodents improves tissue sparing and functional recovery. Despite their therapeutic potential, most glutamate receptor antagonists have detrimental side effects and have largely failed clinical trials. Topiramate is an AMPA-specific, glutamate receptor antagonists that is FDA-approved to treat CNS disorders. In the current study we tested whether topiramate treatment is neuroprotective after cervical contusion injury in rats. We report that topiramate, delivered 15-minutes after SCI, increases tissue sparing and preserves oligodendrocytes and neurons when compared to vehicle treatment. In addition, topiramate is more effective than the AMPA-receptor antagonist, NBQX. To the best of our knowledge, this is the first report documenting a neuroprotective effect of topiramate treatment after spinal cord injury.
ISSN:1932-6203