Mathematically Proving Bell Nonlocality Motivated by the GHZ Argument

Bell nonlocality of quantum states is an important resource in quantum information and then has various applications. It is usually detected by the violation of some Bell’s inequalities and the all-versus-nothing test. In the present paper, we aim to establish some mathematical methods fo...

Full description

Bibliographic Details
Main Authors: Qiaowei Zhang, Zhihua Guo, Huaixin Cao
Format: Article
Language:English
Published: IEEE 2021-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9369290/
Description
Summary:Bell nonlocality of quantum states is an important resource in quantum information and then has various applications. It is usually detected by the violation of some Bell’s inequalities and the all-versus-nothing test. In the present paper, we aim to establish some mathematical methods for proving Bell nonlocality without inequalities, inspired by the work [Phys. Rev. Lett., 89, 080402 (2002)] regarding the GHZ paradox. For self-containedness, we recall the mathematical definition of Bell nonlocality proposed in [Sci. China-Phys. Mech. Astron. 62, 030311 (2019)] and then give some basic properties on it. Then we derive some necessary conditions for a multipartite state to be Bell local and obtain some sufficient conditions for a state to be Bell nonlocal in terms of “expectations” of local observables without invoking Bell inequalities. Unlike the standard approach to nonlocality detection based on violation of Bell inequalities, the obtained criteria are formulated in terms of certain relations for expectation values of local observables that are constructed from the well-known GHZ paradoxes.
ISSN:2169-3536