Metabolites identification of oil palm roots infected with Ganoderma boninense using GC–MS-based metabolomics

An approach to metabolomics profiling of non-infected and Ganoderma boninense (G. boninsense) infected oil palm roots crude extracts that utilize gas chromatography-mass spectrometry (GC–MS) and multivariate statistics of principal component analysis (PCA) have been tested. This combination has prov...

Full description

Bibliographic Details
Main Authors: Azizul Isha, Nor Azah Yusof, Khozirah Shaari, Rosiah Osman, Siti Nor Akmar Abdullah, Mui-Yun Wong
Format: Article
Language:English
Published: Elsevier 2020-07-01
Series:Arabian Journal of Chemistry
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1878535220301805
Description
Summary:An approach to metabolomics profiling of non-infected and Ganoderma boninense (G. boninsense) infected oil palm roots crude extracts that utilize gas chromatography-mass spectrometry (GC–MS) and multivariate statistics of principal component analysis (PCA) have been tested. This combination has provided a rapid approach in investigating the changes in the metabolite variations of non-infected and infected oil palm roots at 14 and 30 days post-infection. The extracts were prepared by using 80% (v/v) of methanol. In identifying the metabolites responsible for each differentiation, PCA model was generated in loading bi-plot. Dimethyl benzene-1,4-dicarboxylate, methyl 3-(3,5-ditert-butyl-4-hydroxyphenyl)propanoate, ergost-5-en-3-ol, (3β), stigmast-5-en-3-ol, (3β), stigmasterol, methyl hexadecanoate, methyl (9Z,12Z)-octadeca-9,12-dienoate, methyl octadecanoate, 2-(hydroxymethyl)-2-nitropropane-1,3-diol, methyl (Z)-octadec-6-enoate and (E)-icos-5-ene were found more abundant in G. boninense infected roots than in non-infected roots. Steroidal compounds and fatty acid derivatives which has been determined in the non-infected and G. boninense infected roots regulate a variety of responses to the G. boninense. The abundant of these metabolites in G. boninense infected roots are due to the crucial roles in pathogen defence.
ISSN:1878-5352