Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification
Abstract Background SPECT-CT using radiolabeled phosphonates is considered a standard for assessing bone metabolism (e.g., in patients with osteoarthritis of knee joints). However, SPECT can be influenced by metal artifacts in CT caused by endoprostheses affecting attenuation correction. The current...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-02-01
|
Series: | EJNMMI Physics |
Subjects: | |
Online Access: | https://doi.org/10.1186/s40658-021-00360-z |
id |
doaj-24de9cce8a404cc89fcd64864fb1e0d7 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Oliver S. Grosser Marcus Klutzny Heiko Wissel Dennis Kupitz Michael Finger Simone Schenke Jan Wuestemann Christoph H. Lohmann Christoph Hoeschen Maciej Pech Christian Staerke Michael C. Kreissl |
spellingShingle |
Oliver S. Grosser Marcus Klutzny Heiko Wissel Dennis Kupitz Michael Finger Simone Schenke Jan Wuestemann Christoph H. Lohmann Christoph Hoeschen Maciej Pech Christian Staerke Michael C. Kreissl Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification EJNMMI Physics Hybrid SPECT-CT Knee implant system Joint unloading implant Optimization Bone remodeling |
author_facet |
Oliver S. Grosser Marcus Klutzny Heiko Wissel Dennis Kupitz Michael Finger Simone Schenke Jan Wuestemann Christoph H. Lohmann Christoph Hoeschen Maciej Pech Christian Staerke Michael C. Kreissl |
author_sort |
Oliver S. Grosser |
title |
Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification |
title_short |
Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification |
title_full |
Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification |
title_fullStr |
Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification |
title_full_unstemmed |
Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification |
title_sort |
quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (atlas knee system)—effect of metal artifacts on a spect-ct-based quantification |
publisher |
SpringerOpen |
series |
EJNMMI Physics |
issn |
2197-7364 |
publishDate |
2021-02-01 |
description |
Abstract Background SPECT-CT using radiolabeled phosphonates is considered a standard for assessing bone metabolism (e.g., in patients with osteoarthritis of knee joints). However, SPECT can be influenced by metal artifacts in CT caused by endoprostheses affecting attenuation correction. The current study examined the effects of metal artifacts in CT of a specific endoprosthesis design on quantitative hybrid SPECT-CT imaging. The implant was positioned inside a phantom homogenously filled with activity (955 MBq 99mTc). CT imaging was performed for different X-ray tube currents (I = 10, 40, 125 mA) and table pitches (p = 0.562 and 1.375). X-ray tube voltage (U = 120 kVp) and primary collimation (16 × 0.625 mm) were kept constant for all scans. The CT reconstruction was performed with five different reconstruction kernels (slice thickness, 1.25 mm and 3.75 mm, each 512 × 512 matrix). Effects from metal artifacts were analyzed for different CT scans and reconstruction protocols. ROI analysis of CT and SPECT data was performed for two slice positions/volumes representing the typical locations for target structures relative to the prosthesis (e.g., femur and tibia). A reference region (homogenous activity concentration without influence from metal artifacts) was analyzed for comparison. Results Significant effects caused by CT metal artifacts on attenuation-corrected SPECT were observed for the different slice positions, reconstructed slice thicknesses of CT data, and pitch and CT-reconstruction kernels used (all, p < 0.0001). Based on the optimization, a set of three protocols was identified minimizing the effect of CT metal artifacts on SPECT data. Regarding the reference region, the activity concentration in the anatomically correlated volume was underestimated by 8.9–10.1%. A slight inhomogeneity of the reconstructed activity concentration was detected inside the regions with a median up to 0.81% (p < 0.0001). Using an X-ray tube current of 40 mA showed the best result, balancing quantification and CT exposure. Conclusion The results of this study demonstrate the need for the evaluation of SPECT-CT protocols in prosthesis imaging. Phantom experiments demonstrated the possibility for quantitative SPECT-CT of bone turnover in a specific prosthesis design. Meanwhile, a systematic bias caused by metal implants on quantitative SPECT data has to be considered. |
topic |
Hybrid SPECT-CT Knee implant system Joint unloading implant Optimization Bone remodeling |
url |
https://doi.org/10.1186/s40658-021-00360-z |
work_keys_str_mv |
AT oliversgrosser quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT marcusklutzny quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT heikowissel quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT denniskupitz quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT michaelfinger quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT simoneschenke quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT janwuestemann quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT christophhlohmann quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT christophhoeschen quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT maciejpech quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT christianstaerke quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification AT michaelckreissl quantitativeimagingofboneremodelinginpatientswithaunicompartmentaljointunloadingkneeimplantatlaskneesystemeffectofmetalartifactsonaspectctbasedquantification |
_version_ |
1724258474267770880 |
spelling |
doaj-24de9cce8a404cc89fcd64864fb1e0d72021-02-21T12:07:22ZengSpringerOpenEJNMMI Physics2197-73642021-02-018111510.1186/s40658-021-00360-zQuantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantificationOliver S. Grosser0Marcus Klutzny1Heiko Wissel2Dennis Kupitz3Michael Finger4Simone Schenke5Jan Wuestemann6Christoph H. Lohmann7Christoph Hoeschen8Maciej Pech9Christian Staerke10Michael C. Kreissl11Department of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Orthopaedic Surgery, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Orthopaedic Surgery, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityChair of Medical Systems Technology, Institute of Medical Engineering, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Orthopaedic Surgery, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityDepartment of Radiology and Nuclear Medicine, University Hospital Magdeburg and Medical Faculty of Otto-von-Guericke UniversityAbstract Background SPECT-CT using radiolabeled phosphonates is considered a standard for assessing bone metabolism (e.g., in patients with osteoarthritis of knee joints). However, SPECT can be influenced by metal artifacts in CT caused by endoprostheses affecting attenuation correction. The current study examined the effects of metal artifacts in CT of a specific endoprosthesis design on quantitative hybrid SPECT-CT imaging. The implant was positioned inside a phantom homogenously filled with activity (955 MBq 99mTc). CT imaging was performed for different X-ray tube currents (I = 10, 40, 125 mA) and table pitches (p = 0.562 and 1.375). X-ray tube voltage (U = 120 kVp) and primary collimation (16 × 0.625 mm) were kept constant for all scans. The CT reconstruction was performed with five different reconstruction kernels (slice thickness, 1.25 mm and 3.75 mm, each 512 × 512 matrix). Effects from metal artifacts were analyzed for different CT scans and reconstruction protocols. ROI analysis of CT and SPECT data was performed for two slice positions/volumes representing the typical locations for target structures relative to the prosthesis (e.g., femur and tibia). A reference region (homogenous activity concentration without influence from metal artifacts) was analyzed for comparison. Results Significant effects caused by CT metal artifacts on attenuation-corrected SPECT were observed for the different slice positions, reconstructed slice thicknesses of CT data, and pitch and CT-reconstruction kernels used (all, p < 0.0001). Based on the optimization, a set of three protocols was identified minimizing the effect of CT metal artifacts on SPECT data. Regarding the reference region, the activity concentration in the anatomically correlated volume was underestimated by 8.9–10.1%. A slight inhomogeneity of the reconstructed activity concentration was detected inside the regions with a median up to 0.81% (p < 0.0001). Using an X-ray tube current of 40 mA showed the best result, balancing quantification and CT exposure. Conclusion The results of this study demonstrate the need for the evaluation of SPECT-CT protocols in prosthesis imaging. Phantom experiments demonstrated the possibility for quantitative SPECT-CT of bone turnover in a specific prosthesis design. Meanwhile, a systematic bias caused by metal implants on quantitative SPECT data has to be considered.https://doi.org/10.1186/s40658-021-00360-zHybrid SPECT-CTKnee implant systemJoint unloading implantOptimizationBone remodeling |