Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling.
The mechanisms of host shift in phytophagous insects are poorly understood. Among the many proposed processes involved, sexual selection via semiochemicals has recently been suggested. This hypothesizes that sexual communication using pheromones is modified as a result of development on a new host,...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2018-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC6235263?pdf=render |
id |
doaj-24ec4d6772c44e5d8d6674e495bfa42d |
---|---|
record_format |
Article |
spelling |
doaj-24ec4d6772c44e5d8d6674e495bfa42d2020-11-25T02:00:32ZengPublic Library of Science (PLoS)PLoS ONE1932-62032018-01-011311e020614410.1371/journal.pone.0206144Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling.József VutsChristine M WoodcockLisa KönigStephen J PowersJohn A PickettÁrpád SzentesiMichael A BirkettThe mechanisms of host shift in phytophagous insects are poorly understood. Among the many proposed processes involved, sexual selection via semiochemicals has recently been suggested. This hypothesizes that sexual communication using pheromones is modified as a result of development on a new host, and such plant-induced phenotypic divergence in mate recognition cues can lead to reproductive isolation between host lines. We tested this hypothesis on Acanthoscelides obtectus, an oligophagous bruchid of Phaseolus vulgaris beans worldwide, which also develops in acceptable non-hosts, such as chickpea (Cicer arietinum L.). Male sex pheromone blends of the bean, chickpea and chickpea/bean host lines during artificially induced host shifts showed different composition. Bean-reared females did not distinguish between blends, whereas chickpea and chickpea/bean females preferred the chickpea male pheromone. However, electrophysiological (EAG) responses to male odour of antennae of the three female host lines were similar, all preferring bean-reared males. Egg-laying choice tests revealed a uniform preference for bean seeds across female host lines, even after multiple generations, whereas larvae did not distinguish between bean and chickpea seeds. We conclude that the development of divergent chemical signalling systems during host shifts does not facilitate the evolution of host races in A. obtectus, because oviposition preferences remain unaffected.http://europepmc.org/articles/PMC6235263?pdf=render |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
József Vuts Christine M Woodcock Lisa König Stephen J Powers John A Pickett Árpád Szentesi Michael A Birkett |
spellingShingle |
József Vuts Christine M Woodcock Lisa König Stephen J Powers John A Pickett Árpád Szentesi Michael A Birkett Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. PLoS ONE |
author_facet |
József Vuts Christine M Woodcock Lisa König Stephen J Powers John A Pickett Árpád Szentesi Michael A Birkett |
author_sort |
József Vuts |
title |
Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. |
title_short |
Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. |
title_full |
Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. |
title_fullStr |
Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. |
title_full_unstemmed |
Host shift induces changes in mate choice of the seed predator Acanthoscelides obtectus via altered chemical signalling. |
title_sort |
host shift induces changes in mate choice of the seed predator acanthoscelides obtectus via altered chemical signalling. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2018-01-01 |
description |
The mechanisms of host shift in phytophagous insects are poorly understood. Among the many proposed processes involved, sexual selection via semiochemicals has recently been suggested. This hypothesizes that sexual communication using pheromones is modified as a result of development on a new host, and such plant-induced phenotypic divergence in mate recognition cues can lead to reproductive isolation between host lines. We tested this hypothesis on Acanthoscelides obtectus, an oligophagous bruchid of Phaseolus vulgaris beans worldwide, which also develops in acceptable non-hosts, such as chickpea (Cicer arietinum L.). Male sex pheromone blends of the bean, chickpea and chickpea/bean host lines during artificially induced host shifts showed different composition. Bean-reared females did not distinguish between blends, whereas chickpea and chickpea/bean females preferred the chickpea male pheromone. However, electrophysiological (EAG) responses to male odour of antennae of the three female host lines were similar, all preferring bean-reared males. Egg-laying choice tests revealed a uniform preference for bean seeds across female host lines, even after multiple generations, whereas larvae did not distinguish between bean and chickpea seeds. We conclude that the development of divergent chemical signalling systems during host shifts does not facilitate the evolution of host races in A. obtectus, because oviposition preferences remain unaffected. |
url |
http://europepmc.org/articles/PMC6235263?pdf=render |
work_keys_str_mv |
AT jozsefvuts hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling AT christinemwoodcock hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling AT lisakonig hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling AT stephenjpowers hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling AT johnapickett hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling AT arpadszentesi hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling AT michaelabirkett hostshiftinduceschangesinmatechoiceoftheseedpredatoracanthoscelidesobtectusviaalteredchemicalsignalling |
_version_ |
1724959859396313088 |