Interannual and Seasonal Variability of Greenhouse Gases and Aerosol Emissions from Biomass Burning in Northeastern China Constrained by Satellite Observations

Biomass burning is a major source of greenhouse gases (GHGs) and particulate matter (PM) emissions in China. Despite increasing efforts of fire monitoring, it remains challenging to quantify the variability in interannual and seasonal emissions of GHGs and PM from biomass burning. In this study, we...

Full description

Bibliographic Details
Main Authors: Hongmei Zhao, Guangyi Yang, Daniel Q. Tong, Xuelei Zhang, Aijun Xiu, Shichun Zhang
Format: Article
Language:English
Published: MDPI AG 2021-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/5/1005
Description
Summary:Biomass burning is a major source of greenhouse gases (GHGs) and particulate matter (PM) emissions in China. Despite increasing efforts of fire monitoring, it remains challenging to quantify the variability in interannual and seasonal emissions of GHGs and PM from biomass burning. In this study, we investigated the biomass burning emissions in Northeastern China based on fire radiative power (FRP) obtained from the Visible Infrared Imaging Radiometer Suites (VIIRS) active fires datasets during the period 2012 to 2019. Our results showed that the average annual emissions from biomass burning in Northeastern China during 2012–2019 were: 81.6Tg for CO<sub>2</sub>, 260.2 Gg for CH<sub>4</sub>, 5.5 Gg for N<sub>2</sub>O, 543.2 Gg for PM<sub>2.5</sub> and 573.6 Gg for PM<sub>10</sub>, respectively. Higher levels of GHGs and PM emissions were concentrated in the Songnen Plain and Sanjiang Plain, the main grain producing areas in this region, and were associated with dense fire points. There were two emission peaks observed each year: after harvesting (October to November) and before planting (March to April). During this study period, the total fire emissions initially increased and then decreased in a fluctuating pattern, with emissions peaking in 2015, the year when more emission regulations were introduced. Crop straw was the major source of GHGs and PM among all kinds of biomass burning. Following more stringent controls on burning and the utilization of crop straw, the main burning season changed from autumn to spring. The proportion from spring burning increased from 20.5% in 2013 to 77.1% in 2019, with an annual growth rate of 20%. The results of this study demonstrate the effectiveness of regulatory control in reducing GHGs and PM emissions, as well as satellite fire observations as a powerful means to assess such outcomes.
ISSN:2072-4292