Climate as possible reproductive barrier in Pinus radiata (D. Don) interspecific hybridisation
Historically, interspecific hybridisation with Pinus radiata D. Don had limited success. The effect of environmental conditions and position of pollination bags in the tree were investigated as possible hybridisation barriers. The study was conducted in a P. radiata seed orchard in the Southern Cape...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
‘Marin Drăcea’ National Research-Development Institute in Forestry
2017-12-01
|
Series: | Annals of Forest Research |
Subjects: | |
Online Access: | https://www.afrjournal.org/index.php/afr/article/view/801 |
Summary: | Historically, interspecific hybridisation with Pinus radiata D. Don had limited success. The effect of environmental conditions and position of pollination bags in the tree were investigated as possible hybridisation barriers. The study was conducted in a P. radiata seed orchard in the Southern Cape (South Africa). Field data were compared to the climatic conditions at natural and commercial provenances of seven Mesoamerican Pinus species identified as possible hybrid partners. In vitro pollen studies were used to confirm whether interspecific crosses with P. radiata might be feasible within predefined climatic parameters. The temperature ranges for both top and northern side of P. radiata pine trees in the seed orchard was similar to the natural distribution of P. radiata, P. elliottii Engelm. and P. taeda L. in the USA. Results suggested that pollen of P. elliottii and P. taeda might be more suited to result in the successful pollination of P. radiata than the other Mesoamerican pine species tested in this study. Furthermore, the combination of minimum temperature and precipitation also showed a closer correlation to successful hybridisation with P. radiata for both P. elliotii and P. taeda. However, pollen tube elongation studies did not support these results, suggesting that mean temperature might not be the only determining factor of hybridisation success. Three circadian temperature models that mimic natural conditions were developed for Karatara and Sabie (Tweefontein, Witklip and Spitskop). These models will be tested in future in vitro studies to further evaluate temperature fluctuations between day and night regimes as a possible reproductive barrier limiting hybridisation success between P. radiata and other Mesoamerican pine species. |
---|---|
ISSN: | 1844-8135 2065-2445 |