Characterizing the Action-Observation Network Through Functional Near-Infrared Spectroscopy: A Review

Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has undergone tremendous growth over the last decade due to methodological advantages over other measures of brain activation. The action-observation network (AON), a system of brain structures proposed to have “mirroring...

Full description

Bibliographic Details
Main Authors: Emma E. Condy, Helga O. Miguel, John Millerhagen, Doug Harrison, Kosar Khaksari, Nathan Fox, Amir Gandjbakhche
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-02-01
Series:Frontiers in Human Neuroscience
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fnhum.2021.627983/full
Description
Summary:Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has undergone tremendous growth over the last decade due to methodological advantages over other measures of brain activation. The action-observation network (AON), a system of brain structures proposed to have “mirroring” abilities (e.g., active when an individual completes an action or when they observe another complete that action), has been studied in humans through neural measures such as fMRI and electroencephalogram (EEG); however, limitations of these methods are problematic for AON paradigms. For this reason, fNIRS is proposed as a solution to investigating the AON in humans. The present review article briefly summarizes previous neural findings in the AON and examines the state of AON research using fNIRS in adults. A total of 14 fNIRS articles are discussed, paying particular attention to methodological choices and considerations while summarizing the general findings to aid in developing better protocols to study the AON through fNIRS. Additionally, future directions of this work are discussed, specifically in relation to researching AON development and potential multimodal imaging applications.
ISSN:1662-5161