Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments

Obtaining ultracold alkaline earth(-like) atoms in space encounters the problem of performing narrow-line laser cooling in microgravity environments (<inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semant...

Full description

Bibliographic Details
Main Authors: Jie Ren, Hui Liu, Xiaotong Lu, Hong Chang
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/14/4928
id doaj-25e0580c40d9455fb221d94a5dda13e5
record_format Article
spelling doaj-25e0580c40d9455fb221d94a5dda13e52020-11-25T03:16:54ZengMDPI AGApplied Sciences2076-34172020-07-01104928492810.3390/app10144928Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity EnvironmentsJie Ren0Hui Liu1Xiaotong Lu2Hong Chang3CAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi’an 710600, ChinaState Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi’an 710069, ChinaCAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi’an 710600, ChinaCAS Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Xi’an 710600, ChinaObtaining ultracold alkaline earth(-like) atoms in space encounters the problem of performing narrow-line laser cooling in microgravity environments (<inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>-gEs). This paper reports an analysis of the magneto-optical trap (MOT) based on the narrow-line transition in <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>88</mn> </msup> </semantics> </math> </inline-formula>Sr, while paying special attention to the role of the gravity. This analysis suggests the MOTs based on narrow-line transitions cannot be cold and dense enough in a <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>-gE. We thus propose a strategy: that one can use a dual-frequency MOT to realize a low-temperature, high density, and high transfer efficiency, narrow-line red MOT in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>-gEs.https://www.mdpi.com/2076-3417/10/14/4928lasering cooling and trappingmicrogravityMonte Carlo simulationoptical lattice clocksin space
collection DOAJ
language English
format Article
sources DOAJ
author Jie Ren
Hui Liu
Xiaotong Lu
Hong Chang
spellingShingle Jie Ren
Hui Liu
Xiaotong Lu
Hong Chang
Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments
Applied Sciences
lasering cooling and trapping
microgravity
Monte Carlo simulation
optical lattice clocks
in space
author_facet Jie Ren
Hui Liu
Xiaotong Lu
Hong Chang
author_sort Jie Ren
title Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments
title_short Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments
title_full Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments
title_fullStr Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments
title_full_unstemmed Analysis of Narrow-Line Laser Cooling and Trapping of Sr Atoms in Microgravity Environments
title_sort analysis of narrow-line laser cooling and trapping of sr atoms in microgravity environments
publisher MDPI AG
series Applied Sciences
issn 2076-3417
publishDate 2020-07-01
description Obtaining ultracold alkaline earth(-like) atoms in space encounters the problem of performing narrow-line laser cooling in microgravity environments (<inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>-gEs). This paper reports an analysis of the magneto-optical trap (MOT) based on the narrow-line transition in <inline-formula> <math display="inline"> <semantics> <msup> <mrow></mrow> <mn>88</mn> </msup> </semantics> </math> </inline-formula>Sr, while paying special attention to the role of the gravity. This analysis suggests the MOTs based on narrow-line transitions cannot be cold and dense enough in a <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>-gE. We thus propose a strategy: that one can use a dual-frequency MOT to realize a low-temperature, high density, and high transfer efficiency, narrow-line red MOT in <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">μ</mi> </semantics> </math> </inline-formula>-gEs.
topic lasering cooling and trapping
microgravity
Monte Carlo simulation
optical lattice clocks
in space
url https://www.mdpi.com/2076-3417/10/14/4928
work_keys_str_mv AT jieren analysisofnarrowlinelasercoolingandtrappingofsratomsinmicrogravityenvironments
AT huiliu analysisofnarrowlinelasercoolingandtrappingofsratomsinmicrogravityenvironments
AT xiaotonglu analysisofnarrowlinelasercoolingandtrappingofsratomsinmicrogravityenvironments
AT hongchang analysisofnarrowlinelasercoolingandtrappingofsratomsinmicrogravityenvironments
_version_ 1724634294617374720