Twin Hyper-Ellipsoidal Support Vector Machine for Binary Classification
In this paper, a twin hyper-ellipsoidal support vector machine (TESVM) for binary classification of data is presented. Similar to twin support SVM(TWSVM) and twin hypersphere SVM (THSVM), as in the literature, our proposed method finds two hyper-ellipsoidals by solving two related SVM-type quadratic...
Main Authors: | Zeinab Ebrahimpour, Wanggen Wan, Arash Sioofy Khoojine, Li Hou |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9078674/ |
Similar Items
-
Stable and Unstable Pattern Recognition Using <i>D</i><sup>2</sup> and SVM: A Multivariate Approach
by: Pamela Chiñas-Sanchez, et al.
Published: (2021-12-01) -
Using Generalized Entropies and OC-SVM with Mahalanobis Kernel for Detection and Classification of Anomalies in Network Traffic
by: Jayro Santiago-Paz, et al.
Published: (2015-09-01) -
Out-of-Control Multivariate Patterns Recognition Using <i>D</i><sup>2</sup> and SVM: A Study Case for GMAW
by: Pamela Chiñas-Sanchez, et al.
Published: (2021-02-01) -
Méthodes statistiques de détection d’observations atypiques pour des données en grande dimension
by: Archimbaud, Aurore
Published: (2018) -
Impact du réchauffement climatique sur la distribution spatiale des ressources halieutiques le long du littoral français : observations et scénarios
by: Lenoir, Sylvain
Published: (2011)