Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras

Let Alg 𝒩 be a nest algebra associated with the nest 𝒩 on a (real or complex) Banach space 𝕏. Suppose that there exists a non-trivial idempotent P ∈ Alg 𝒩 with range P (𝕏) ∈ 𝒩, and δ : Alg 𝒩 → Alg 𝒩 is a continuous linear mapping (generalized) left derivable at P, i.e. δ (ab) = aδ (b) + bδ (a) (δ (a...

Full description

Bibliographic Details
Main Authors: Ghahramani Hoger, Sattari Saman
Format: Article
Language:English
Published: Sciendo 2019-09-01
Series:Annales Mathematicae Silesianae
Subjects:
Online Access:http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0001/amsil-2019-0001.xml?format=INT
id doaj-264d26cb56aa4f0e80e6483bceb9b840
record_format Article
spelling doaj-264d26cb56aa4f0e80e6483bceb9b8402020-11-24T21:24:08ZengSciendoAnnales Mathematicae Silesianae2391-42382019-09-013319710510.2478/amsil-2019-0001amsil-2019-0001Left Derivable Maps at Non-Trivial Idempotents on Nest AlgebrasGhahramani Hoger0Sattari Saman1Department of Mathematics, University of Kurdistan, P. O. Box 416, Sanandaj, IranDepartment of Mathematics, University of Kurdistan, P. O. Box 416, Sanandaj, IranLet Alg 𝒩 be a nest algebra associated with the nest 𝒩 on a (real or complex) Banach space 𝕏. Suppose that there exists a non-trivial idempotent P ∈ Alg 𝒩 with range P (𝕏) ∈ 𝒩, and δ : Alg 𝒩 → Alg 𝒩 is a continuous linear mapping (generalized) left derivable at P, i.e. δ (ab) = aδ (b) + bδ (a) (δ (ab) = aδ(b) + bδ(a) − baδ(I)) for any a, b ∈ Alg 𝒩 with ab = P, where I is the identity element of Alg 𝒩. We show that is a (generalized) Jordan left derivation. Moreover, in a strongly operator topology we characterize continuous linear maps on some nest algebras Alg 𝒩 with the property that δ (P ) = 2Pδ (P ) or δ (P ) = 2P δ (P ) − Pδ (I) for every idempotent P in Alg 𝒩.http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0001/amsil-2019-0001.xml?format=INTnest algebraleft derivableleft derivation47B4747L35
collection DOAJ
language English
format Article
sources DOAJ
author Ghahramani Hoger
Sattari Saman
spellingShingle Ghahramani Hoger
Sattari Saman
Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
Annales Mathematicae Silesianae
nest algebra
left derivable
left derivation
47B47
47L35
author_facet Ghahramani Hoger
Sattari Saman
author_sort Ghahramani Hoger
title Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
title_short Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
title_full Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
title_fullStr Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
title_full_unstemmed Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
title_sort left derivable maps at non-trivial idempotents on nest algebras
publisher Sciendo
series Annales Mathematicae Silesianae
issn 2391-4238
publishDate 2019-09-01
description Let Alg 𝒩 be a nest algebra associated with the nest 𝒩 on a (real or complex) Banach space 𝕏. Suppose that there exists a non-trivial idempotent P ∈ Alg 𝒩 with range P (𝕏) ∈ 𝒩, and δ : Alg 𝒩 → Alg 𝒩 is a continuous linear mapping (generalized) left derivable at P, i.e. δ (ab) = aδ (b) + bδ (a) (δ (ab) = aδ(b) + bδ(a) − baδ(I)) for any a, b ∈ Alg 𝒩 with ab = P, where I is the identity element of Alg 𝒩. We show that is a (generalized) Jordan left derivation. Moreover, in a strongly operator topology we characterize continuous linear maps on some nest algebras Alg 𝒩 with the property that δ (P ) = 2Pδ (P ) or δ (P ) = 2P δ (P ) − Pδ (I) for every idempotent P in Alg 𝒩.
topic nest algebra
left derivable
left derivation
47B47
47L35
url http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0001/amsil-2019-0001.xml?format=INT
work_keys_str_mv AT ghahramanihoger leftderivablemapsatnontrivialidempotentsonnestalgebras
AT sattarisaman leftderivablemapsatnontrivialidempotentsonnestalgebras
_version_ 1725989379537633280