Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras
Let Alg 𝒩 be a nest algebra associated with the nest 𝒩 on a (real or complex) Banach space 𝕏. Suppose that there exists a non-trivial idempotent P ∈ Alg 𝒩 with range P (𝕏) ∈ 𝒩, and δ : Alg 𝒩 → Alg 𝒩 is a continuous linear mapping (generalized) left derivable at P, i.e. δ (ab) = aδ (b) + bδ (a) (δ (a...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2019-09-01
|
Series: | Annales Mathematicae Silesianae |
Subjects: | |
Online Access: | http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0001/amsil-2019-0001.xml?format=INT |
id |
doaj-264d26cb56aa4f0e80e6483bceb9b840 |
---|---|
record_format |
Article |
spelling |
doaj-264d26cb56aa4f0e80e6483bceb9b8402020-11-24T21:24:08ZengSciendoAnnales Mathematicae Silesianae2391-42382019-09-013319710510.2478/amsil-2019-0001amsil-2019-0001Left Derivable Maps at Non-Trivial Idempotents on Nest AlgebrasGhahramani Hoger0Sattari Saman1Department of Mathematics, University of Kurdistan, P. O. Box 416, Sanandaj, IranDepartment of Mathematics, University of Kurdistan, P. O. Box 416, Sanandaj, IranLet Alg 𝒩 be a nest algebra associated with the nest 𝒩 on a (real or complex) Banach space 𝕏. Suppose that there exists a non-trivial idempotent P ∈ Alg 𝒩 with range P (𝕏) ∈ 𝒩, and δ : Alg 𝒩 → Alg 𝒩 is a continuous linear mapping (generalized) left derivable at P, i.e. δ (ab) = aδ (b) + bδ (a) (δ (ab) = aδ(b) + bδ(a) − baδ(I)) for any a, b ∈ Alg 𝒩 with ab = P, where I is the identity element of Alg 𝒩. We show that is a (generalized) Jordan left derivation. Moreover, in a strongly operator topology we characterize continuous linear maps on some nest algebras Alg 𝒩 with the property that δ (P ) = 2Pδ (P ) or δ (P ) = 2P δ (P ) − Pδ (I) for every idempotent P in Alg 𝒩.http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0001/amsil-2019-0001.xml?format=INTnest algebraleft derivableleft derivation47B4747L35 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ghahramani Hoger Sattari Saman |
spellingShingle |
Ghahramani Hoger Sattari Saman Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras Annales Mathematicae Silesianae nest algebra left derivable left derivation 47B47 47L35 |
author_facet |
Ghahramani Hoger Sattari Saman |
author_sort |
Ghahramani Hoger |
title |
Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras |
title_short |
Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras |
title_full |
Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras |
title_fullStr |
Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras |
title_full_unstemmed |
Left Derivable Maps at Non-Trivial Idempotents on Nest Algebras |
title_sort |
left derivable maps at non-trivial idempotents on nest algebras |
publisher |
Sciendo |
series |
Annales Mathematicae Silesianae |
issn |
2391-4238 |
publishDate |
2019-09-01 |
description |
Let Alg 𝒩 be a nest algebra associated with the nest 𝒩 on a (real or complex) Banach space 𝕏. Suppose that there exists a non-trivial idempotent P ∈ Alg 𝒩 with range P (𝕏) ∈ 𝒩, and δ : Alg 𝒩 → Alg 𝒩 is a continuous linear mapping (generalized) left derivable at P, i.e. δ (ab) = aδ (b) + bδ (a) (δ (ab) = aδ(b) + bδ(a) − baδ(I)) for any a, b ∈ Alg 𝒩 with ab = P, where I is the identity element of Alg 𝒩. We show that is a (generalized) Jordan left derivation. Moreover, in a strongly operator topology we characterize continuous linear maps on some nest algebras Alg 𝒩 with the property that δ (P ) = 2Pδ (P ) or δ (P ) = 2P δ (P ) − Pδ (I) for every idempotent P in Alg 𝒩. |
topic |
nest algebra left derivable left derivation 47B47 47L35 |
url |
http://www.degruyter.com/view/j/amsil.2019.33.issue-1/amsil-2019-0001/amsil-2019-0001.xml?format=INT |
work_keys_str_mv |
AT ghahramanihoger leftderivablemapsatnontrivialidempotentsonnestalgebras AT sattarisaman leftderivablemapsatnontrivialidempotentsonnestalgebras |
_version_ |
1725989379537633280 |