Particle Coherent Structures in Confined Oscillatory Switching Centrifugation

A small spherical rigid particle in a cylindrical cavity is considered. The harmonic rotation of the cavity wall drives the background flow characterized by the Strouhal number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><seman...

Full description

Bibliographic Details
Main Author: Francesco Romanó
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/11/2/183
id doaj-268f0ddf3d6a44af9813dac771d9a75b
record_format Article
spelling doaj-268f0ddf3d6a44af9813dac771d9a75b2021-02-13T00:05:05ZengMDPI AGCrystals2073-43522021-02-011118318310.3390/cryst11020183Particle Coherent Structures in Confined Oscillatory Switching CentrifugationFrancesco Romanó0Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, UMR 9014-LMFL-Laboratoire de Mécanique des Fluides de Lille-Kampé de Fériet, F-59000 Lille, FranceA small spherical rigid particle in a cylindrical cavity is considered. The harmonic rotation of the cavity wall drives the background flow characterized by the Strouhal number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>t</mi><mi>r</mi></mrow></semantics></math></inline-formula>, assumed as the first parameter of our investigation. The particle immersed in the flow (assumed Stokesian) has a Stokes number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>S</mi><mi>t</mi></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and a particle-to-fluid density ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϱ</mi></semantics></math></inline-formula> which is assumed as the second parameter of this study. Building on the theoretical understanding of the recently discovered oscillatory switching centrifugation for inertial particles in unbounded flows, we investigate the effect of a confinement. For the first time we study how the presence of a wall affects the particle trajectory in oscillatory switching centrifugation dynamics. The emergence of two qualitatively different particle attractors is characterized for particles centrifuged towards the cavity wall. The implication of two such classes of attractors is discussed focusing on the application to microfluidics. We propose some strategies for exploiting the confined oscillatory switching centrifugation for selective particle segregation and for the enhancement of particle interaction events.https://www.mdpi.com/2073-4352/11/2/183particle dynamicsStokesian flowoscillatory flowcentrifugationmixingparticle-boundary interaction
collection DOAJ
language English
format Article
sources DOAJ
author Francesco Romanó
spellingShingle Francesco Romanó
Particle Coherent Structures in Confined Oscillatory Switching Centrifugation
Crystals
particle dynamics
Stokesian flow
oscillatory flow
centrifugation
mixing
particle-boundary interaction
author_facet Francesco Romanó
author_sort Francesco Romanó
title Particle Coherent Structures in Confined Oscillatory Switching Centrifugation
title_short Particle Coherent Structures in Confined Oscillatory Switching Centrifugation
title_full Particle Coherent Structures in Confined Oscillatory Switching Centrifugation
title_fullStr Particle Coherent Structures in Confined Oscillatory Switching Centrifugation
title_full_unstemmed Particle Coherent Structures in Confined Oscillatory Switching Centrifugation
title_sort particle coherent structures in confined oscillatory switching centrifugation
publisher MDPI AG
series Crystals
issn 2073-4352
publishDate 2021-02-01
description A small spherical rigid particle in a cylindrical cavity is considered. The harmonic rotation of the cavity wall drives the background flow characterized by the Strouhal number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>S</mi><mi>t</mi><mi>r</mi></mrow></semantics></math></inline-formula>, assumed as the first parameter of our investigation. The particle immersed in the flow (assumed Stokesian) has a Stokes number <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>S</mi><mi>t</mi></mrow><mo>=</mo><mn>1</mn></mrow></semantics></math></inline-formula> and a particle-to-fluid density ratio <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ϱ</mi></semantics></math></inline-formula> which is assumed as the second parameter of this study. Building on the theoretical understanding of the recently discovered oscillatory switching centrifugation for inertial particles in unbounded flows, we investigate the effect of a confinement. For the first time we study how the presence of a wall affects the particle trajectory in oscillatory switching centrifugation dynamics. The emergence of two qualitatively different particle attractors is characterized for particles centrifuged towards the cavity wall. The implication of two such classes of attractors is discussed focusing on the application to microfluidics. We propose some strategies for exploiting the confined oscillatory switching centrifugation for selective particle segregation and for the enhancement of particle interaction events.
topic particle dynamics
Stokesian flow
oscillatory flow
centrifugation
mixing
particle-boundary interaction
url https://www.mdpi.com/2073-4352/11/2/183
work_keys_str_mv AT francescoromano particlecoherentstructuresinconfinedoscillatoryswitchingcentrifugation
_version_ 1724272432048504832