Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions

The electromagnetic proton cyclotron anisotropy instability is excited if the hot proton temperature anisotropy, <i>T</i><sub>&#8869;</sub><i><sub>h</sub></i>/<i>T</i><sub>\mid\mid</sub><i> <sub>h</sub>&l...

Full description

Bibliographic Details
Main Authors: S. P. Gary, L. Yin, D. Winske
Format: Article
Language:English
Published: Copernicus Publications 1996-01-01
Series:Annales Geophysicae
Online Access:https://www.ann-geophys.net/14/1/1996/angeo-14-1-1996.pdf
id doaj-2692ae9b39734f31b0c51c1cbbc3e689
record_format Article
spelling doaj-2692ae9b39734f31b0c51c1cbbc3e6892020-11-24T21:42:04ZengCopernicus PublicationsAnnales Geophysicae0992-76891432-05761996-01-011411010.1007/s00585-996-0001-2Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ionsS. P. GaryL. YinD. WinskeThe electromagnetic proton cyclotron anisotropy instability is excited if the hot proton temperature anisotropy, <i>T</i><sub>&#8869;</sub><i><sub>h</sub></i>/<i>T</i><sub>\mid\mid</sub><i> <sub>h</sub></i>, is sufficiently large compared to unity, where the subscript <i>h</i> denotes the hot protons and the perpendicular and parallel symbols denote directions relative to the background magnetic field. This instability is important in the outer magnetosphere because it has been shown to lead to an upper bound on <i>T</i><sub>&#8869;</sub><i><sub>h</sub></i>/<i>T</i><sub>\mid\mid</sub><i> <sub>h</sub></i> and to cool iron heating. Here one-dimensional initial-value hybrid simulations with spatial variations in the direction of the background magnetic field are used to study this instability in a homogeneous plasma model which represents three ionic constituents of the outer magnetosphere: hot anisotropic protons, cool, initially isotropic protons, and cool, initially isotropic singly ionized helium. These simulations show that the presence of a tenuous helium component does not significantly change the scalings of either the hot proton anisotropy upper bound or the heating of the cool protons. The simulations also show that the helium ion heating rate increases with &#x03B2;<sub>\mid\mid</sub><i><sub>h</sub></i> in contrast to the cool proton energization which decreases with this parameter. The prediction of this homogeneous plasma model, therefore, for cool ions subject to heating by the proton cyclotron instability is that the observed ratio of cool helium temperature to cool proton temperature should increase as &#x03B2;<sub>\mid\mid</sub><i><sub>h</sub></i> increases.https://www.ann-geophys.net/14/1/1996/angeo-14-1-1996.pdf
collection DOAJ
language English
format Article
sources DOAJ
author S. P. Gary
L. Yin
D. Winske
spellingShingle S. P. Gary
L. Yin
D. Winske
Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
Annales Geophysicae
author_facet S. P. Gary
L. Yin
D. Winske
author_sort S. P. Gary
title Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
title_short Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
title_full Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
title_fullStr Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
title_full_unstemmed Electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
title_sort electromagnetic proton cyclotron instability: heating of cool magnetospheric helium ions
publisher Copernicus Publications
series Annales Geophysicae
issn 0992-7689
1432-0576
publishDate 1996-01-01
description The electromagnetic proton cyclotron anisotropy instability is excited if the hot proton temperature anisotropy, <i>T</i><sub>&#8869;</sub><i><sub>h</sub></i>/<i>T</i><sub>\mid\mid</sub><i> <sub>h</sub></i>, is sufficiently large compared to unity, where the subscript <i>h</i> denotes the hot protons and the perpendicular and parallel symbols denote directions relative to the background magnetic field. This instability is important in the outer magnetosphere because it has been shown to lead to an upper bound on <i>T</i><sub>&#8869;</sub><i><sub>h</sub></i>/<i>T</i><sub>\mid\mid</sub><i> <sub>h</sub></i> and to cool iron heating. Here one-dimensional initial-value hybrid simulations with spatial variations in the direction of the background magnetic field are used to study this instability in a homogeneous plasma model which represents three ionic constituents of the outer magnetosphere: hot anisotropic protons, cool, initially isotropic protons, and cool, initially isotropic singly ionized helium. These simulations show that the presence of a tenuous helium component does not significantly change the scalings of either the hot proton anisotropy upper bound or the heating of the cool protons. The simulations also show that the helium ion heating rate increases with &#x03B2;<sub>\mid\mid</sub><i><sub>h</sub></i> in contrast to the cool proton energization which decreases with this parameter. The prediction of this homogeneous plasma model, therefore, for cool ions subject to heating by the proton cyclotron instability is that the observed ratio of cool helium temperature to cool proton temperature should increase as &#x03B2;<sub>\mid\mid</sub><i><sub>h</sub></i> increases.
url https://www.ann-geophys.net/14/1/1996/angeo-14-1-1996.pdf
work_keys_str_mv AT spgary electromagneticprotoncyclotroninstabilityheatingofcoolmagnetosphericheliumions
AT lyin electromagneticprotoncyclotroninstabilityheatingofcoolmagnetosphericheliumions
AT dwinske electromagneticprotoncyclotroninstabilityheatingofcoolmagnetosphericheliumions
_version_ 1725919023199158272