Summary: | Abnormal plasma apolipoprotein levels are consistently implicated in CVD risk. Although 30% to 60% of their interindividual variability is genetic, common genetic variants explain only 10% to 20% of these differences. Rare genetic variants may be major sources of the missing heritability, yet quantitative evaluations of their contribution to phenotypic variability are lacking. Here, we analyzed whole-genome and whole-exome sequencing data from 138,632 individuals across seven major human populations to present a systematic overview of genetic apolipoprotein variability. We provide population-specific frequencies of 38 clinically important apolipoprotein alleles and identify further 6,875 genetic variants, 33% of which are novel and 98.7% of which are rare with minor allele frequencies <1%. We predicted the functional impact of rare variants and found that their relative importance differed drastically between genes and among ethnicities. Importantly, we validated the clinical relevance of multiple variants with predicted effects by leveraging association data from the CARDIoGRAM (Coronary Artery Disease Genomewide Replication and Meta-analysis) and Global Lipids Genetics consortia. Overall, we provide a consolidated overview of population-specific apolipoprotein genetics as a valuable data resource for scientists and clinicians, estimate the importance of rare genetic variants for the missing heritability of apolipoprotein-associated disease traits, and pinpoint multiple novel apolipoprotein variants with putative population-specific impacts on serum lipid levels.
|