Spin Current in <i>BF</i> Theory

In this paper, a current that is called spin current and corresponds to the variation of the matter action in <i>BF</i> theory with respect to the spin connection <i>A</i> which takes values in Lie algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math...

Full description

Bibliographic Details
Main Author: Malik Almatwi
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Physics
Subjects:
Online Access:https://www.mdpi.com/2624-8174/3/2/29
id doaj-26c77a98b84d4b2f8f19d41b40aa1a43
record_format Article
spelling doaj-26c77a98b84d4b2f8f19d41b40aa1a432021-06-30T23:29:00ZengMDPI AGPhysics2624-81742021-06-0132942744810.3390/physics3020029Spin Current in <i>BF</i> TheoryMalik Almatwi0Department of Mathematical Science, Ritsumeikan University, 6-1-1 Matsugaoka, Otsu, Shiga 520-2102, JapanIn this paper, a current that is called spin current and corresponds to the variation of the matter action in <i>BF</i> theory with respect to the spin connection <i>A</i> which takes values in Lie algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">so</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula>, in self-dual formalism is introduced. For keeping the 2-form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>B</mi><mi>i</mi></msup></semantics></math></inline-formula> constraint (covariant derivation) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><msup><mi>B</mi><mi>i</mi></msup><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> satisfied, it is suggested adding a new term to the <i>BF</i> Lagrangian using a new field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ψ</mi><mi>i</mi></msup></semantics></math></inline-formula>, which can be used for calculating the spin current. The equations of motion are derived and the solutions are dicussed. It is shown that the solutions of the equations do not require a specific metric on the 4-manifold <i>M</i>, and one just needs to know the symmetry of the system and the information about the spin current. Finally, the solutions for spherically and cylindrically symmetric systems are found.https://www.mdpi.com/2624-8174/3/2/29<i>BF</i> theorylocal Lorentz symmetrylocal Lorentz currents
collection DOAJ
language English
format Article
sources DOAJ
author Malik Almatwi
spellingShingle Malik Almatwi
Spin Current in <i>BF</i> Theory
Physics
<i>BF</i> theory
local Lorentz symmetry
local Lorentz currents
author_facet Malik Almatwi
author_sort Malik Almatwi
title Spin Current in <i>BF</i> Theory
title_short Spin Current in <i>BF</i> Theory
title_full Spin Current in <i>BF</i> Theory
title_fullStr Spin Current in <i>BF</i> Theory
title_full_unstemmed Spin Current in <i>BF</i> Theory
title_sort spin current in <i>bf</i> theory
publisher MDPI AG
series Physics
issn 2624-8174
publishDate 2021-06-01
description In this paper, a current that is called spin current and corresponds to the variation of the matter action in <i>BF</i> theory with respect to the spin connection <i>A</i> which takes values in Lie algebra <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="fraktur">so</mi><mo>(</mo><mn>3</mn><mo>,</mo><mi mathvariant="double-struck">C</mi><mo>)</mo></mrow></semantics></math></inline-formula>, in self-dual formalism is introduced. For keeping the 2-form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>B</mi><mi>i</mi></msup></semantics></math></inline-formula> constraint (covariant derivation) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>D</mi><msup><mi>B</mi><mi>i</mi></msup><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> satisfied, it is suggested adding a new term to the <i>BF</i> Lagrangian using a new field <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>ψ</mi><mi>i</mi></msup></semantics></math></inline-formula>, which can be used for calculating the spin current. The equations of motion are derived and the solutions are dicussed. It is shown that the solutions of the equations do not require a specific metric on the 4-manifold <i>M</i>, and one just needs to know the symmetry of the system and the information about the spin current. Finally, the solutions for spherically and cylindrically symmetric systems are found.
topic <i>BF</i> theory
local Lorentz symmetry
local Lorentz currents
url https://www.mdpi.com/2624-8174/3/2/29
work_keys_str_mv AT malikalmatwi spincurrentinibfitheory
_version_ 1721351194206535680