On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation

Longitudinal dispersion of solute released in an unsteady flow between two coaxial cylinders is re-examined in the presence of first order chemical kinetics in the bulk flow. The flow unsteadiness is caused by the oscillation of the outer tube around its axis as well as by a periodic pressure gradie...

Full description

Bibliographic Details
Main Authors: A. K. Roy, A. K. Saha, S. Debnath
Format: Article
Language:English
Published: Isfahan University of Technology 2017-01-01
Series:Journal of Applied Fluid Mechanics
Subjects:
Online Access:http://jafmonline.net/JournalArchive/download?file_ID=43346&issue_ID=242
id doaj-26d06ceb27cb42b984b1929ddbb5c218
record_format Article
spelling doaj-26d06ceb27cb42b984b1929ddbb5c2182020-11-25T00:02:42ZengIsfahan University of Technology Journal of Applied Fluid Mechanics1735-35722017-01-0110514871500.On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall OscillationA. K. Roy0A. K. Saha1S. Debnath2Department of Mathematics, National Institute of Technology, Agartala, Tripura, 799046, IndiaNational Institute of Technology AgartalaDepartment of Mathematics, National Institute of Technology, Agartala, Tripura, 799046, IndiaLongitudinal dispersion of solute released in an unsteady flow between two coaxial cylinders is re-examined in the presence of first order chemical kinetics in the bulk flow. The flow unsteadiness is caused by the oscillation of the outer tube around its axis as well as by a periodic pressure gradient. Unlike some previous works, the gap width of the annular tube is used as the typical length scale which is physically meaningful to a greater extent. In order to employ the method of moment, a finite difference implicit scheme has been adopted to solve the Aris integral moment equations arising from the unsteady convective diffusion equation for all time periods. The individual and combined effects of different velocity components resulting from steady and time-dependent parts of the driving forces are examined and they are identified based on their functionality. In any flow situation, wall factor is found to have a larger contribution in velocity as well as in dispersion compared to the pressure factor. The behaviour of dispersion coefficient with the variation of radius ratio, bulk flow reaction parameter, and frequency parameters have been examined. Dispersion coefficient is found to diminish with the increase of the reaction-rate in the bulk flow, whereas the effect of the radius ratio on the dispersion coefficient is fixed by the form of the velocity distribution. The axial distributions of mean concentration are approximated using Hermite polynomial representation from the first four central moments for a range of different reaction-rate parameters. It has been found that, irrespective of the flow situation, the peak of the concentration distribution decreases with the increase in reaction rate parameter.http://jafmonline.net/JournalArchive/download?file_ID=43346&issue_ID=242Dispersion coefficient; Axial Reynolds number; Concentration distribution; Radius ratio; Poiseuille number; Bulk-flow reaction.
collection DOAJ
language English
format Article
sources DOAJ
author A. K. Roy
A. K. Saha
S. Debnath
spellingShingle A. K. Roy
A. K. Saha
S. Debnath
On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation
Journal of Applied Fluid Mechanics
Dispersion coefficient; Axial Reynolds number; Concentration distribution; Radius ratio; Poiseuille number; Bulk-flow reaction.
author_facet A. K. Roy
A. K. Saha
S. Debnath
author_sort A. K. Roy
title On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation
title_short On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation
title_full On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation
title_fullStr On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation
title_full_unstemmed On Dispersion in Oscillatory Annular Flow Driven Jointly by Pressure Pulsation and Wall Oscillation
title_sort on dispersion in oscillatory annular flow driven jointly by pressure pulsation and wall oscillation
publisher Isfahan University of Technology
series Journal of Applied Fluid Mechanics
issn 1735-3572
publishDate 2017-01-01
description Longitudinal dispersion of solute released in an unsteady flow between two coaxial cylinders is re-examined in the presence of first order chemical kinetics in the bulk flow. The flow unsteadiness is caused by the oscillation of the outer tube around its axis as well as by a periodic pressure gradient. Unlike some previous works, the gap width of the annular tube is used as the typical length scale which is physically meaningful to a greater extent. In order to employ the method of moment, a finite difference implicit scheme has been adopted to solve the Aris integral moment equations arising from the unsteady convective diffusion equation for all time periods. The individual and combined effects of different velocity components resulting from steady and time-dependent parts of the driving forces are examined and they are identified based on their functionality. In any flow situation, wall factor is found to have a larger contribution in velocity as well as in dispersion compared to the pressure factor. The behaviour of dispersion coefficient with the variation of radius ratio, bulk flow reaction parameter, and frequency parameters have been examined. Dispersion coefficient is found to diminish with the increase of the reaction-rate in the bulk flow, whereas the effect of the radius ratio on the dispersion coefficient is fixed by the form of the velocity distribution. The axial distributions of mean concentration are approximated using Hermite polynomial representation from the first four central moments for a range of different reaction-rate parameters. It has been found that, irrespective of the flow situation, the peak of the concentration distribution decreases with the increase in reaction rate parameter.
topic Dispersion coefficient; Axial Reynolds number; Concentration distribution; Radius ratio; Poiseuille number; Bulk-flow reaction.
url http://jafmonline.net/JournalArchive/download?file_ID=43346&issue_ID=242
work_keys_str_mv AT akroy ondispersioninoscillatoryannularflowdrivenjointlybypressurepulsationandwalloscillation
AT aksaha ondispersioninoscillatoryannularflowdrivenjointlybypressurepulsationandwalloscillation
AT sdebnath ondispersioninoscillatoryannularflowdrivenjointlybypressurepulsationandwalloscillation
_version_ 1725437096162754560