Retrieval of Land Surface Temperature over the Heihe River Basin Using HJ-1B Thermal Infrared Data

The reliable estimation of spatially distributed Land Surface Temperature (LST) is useful for monitoring regional land surface heat fluxes. A single-channel method is developed to derive the LST over the Heihe River Basin in China using data from the infrared sensor (IRS) onboard the Chinese “Enviro...

Full description

Bibliographic Details
Main Authors: Xiaoying Ouyang, Li Jia, Yingqi Pan, Guangcheng Hu
Format: Article
Language:English
Published: MDPI AG 2014-12-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/7/1/300
Description
Summary:The reliable estimation of spatially distributed Land Surface Temperature (LST) is useful for monitoring regional land surface heat fluxes. A single-channel method is developed to derive the LST over the Heihe River Basin in China using data from the infrared sensor (IRS) onboard the Chinese “Environmental and Disaster Monitoring and Forecasting with a Small Satellite Constellation” (HJ-1B for short for one of the satellites), with ancillary water vapor information from Moderate Resolution Imaging Spectroradiometer (MODIS) products (MOD05) and in situ automatic sun tracking photometer CE318 data for the first time. In situ LST data for the period from mid-June to mid-September 2012 were acquired from automatic meteorological stations (AMS) that are part of Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project. MOD05-based LST and CE318-based LST are compared with in situ measurements at 16 AMS sites with land cover types of vegetable, maize and orchards. The results show that the use of the MOD05 product could achieve a comparable accuracy in LST retrieval with that achieved using the CE318 data. The largest difference between the MOD05-based LST and CE318-based LST is 0.84 K throughout the study period over the Heihe River Basin. The standard deviation (STD), root mean square error (RMSE), and correlation coefficient (R) of HJ-1B/IRS vs. the in situ measurements are 2.45 K, 2.78 K, and 0.67, respectively, whereas those for the MODIS 1 km LST product vs. the in situ measurements are 4.07 K, 2.98 K, and 0.79, respectively. The spatial pattern of the HJ-1B/LST over the study area in the Heihe River Basin generally agreed well with the MODIS 1 km LST product and contained more detailed spatial textures.
ISSN:2072-4292