Morphological and Optical Characterization of High Density Au/PAA Nanoarrays

Hexagonal nanoarrays of Au nanorods and nanopillar were deposited on nanoporous anodic alumina (PAA) membranes utilizing dc electrodeposition. The surface morphologies and optical properties were characterized by using field emission-scanning electron microscopy (FE-SEM) and UV-Vis spectrophotometer...

Full description

Bibliographic Details
Main Author: Mohamed Shaban
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Journal of Spectroscopy
Online Access:http://dx.doi.org/10.1155/2016/5083482
Description
Summary:Hexagonal nanoarrays of Au nanorods and nanopillar were deposited on nanoporous anodic alumina (PAA) membranes utilizing dc electrodeposition. The surface morphologies and optical properties were characterized by using field emission-scanning electron microscopy (FE-SEM) and UV-Vis spectrophotometer, respectively. The optical reflectance spectra of the as-prepared, pore widened, and 2D-Au nanorods-coated PAA membranes were studied in detail. The effects of the angle of incident, pore widening time, and electrodeposition time on the characteristic peaks positions and intensities of the fabricated nanoarrays were addressed. As the angle of incident increased, the interference peaks and transverse surface resonance are shifted to longer wavelengths, but the longitudinal surface plasmon resonance is shifted to shorter wavelengths. Also, the reflected intensities are decreased linearly for the as-prepared sample and decreased exponentially for Au/PAA samples. Using the modified Kubelka-Munk radiative transfer model, the energy gap is increased from 2.83 to 3.06 eV and the refractive index is decreased from 1.84 to 1.36 for the as-prepared and 70 min pore widened PAA membranes, respectively. Based on the advantages of the fabrication approach and the enhanced and controlled properties, this generation of Au/PAA arrays can be used as efficient building blocks for nanoelectronics and nanophotonic devices.
ISSN:2314-4920
2314-4939