Genome survey and high-resolution backcross genetic linkage map construction of the ridgetail white prawn Exopalaemon carinicauda applications to QTL mapping of growth traits

Abstract Background High-resolution genetic linkage map is critical for QTL mapping, genome sequence assembly and marker-assisted selection in aquaculture species. The ridgetail white prawn Exopalaemon carinicauda is one of the most economic shrimp species naturally distributed in the coasts of east...

Full description

Bibliographic Details
Main Authors: Jitao Li, Jianjian Lv, Ping Liu, Ping Chen, Jiajia Wang, Jian Li
Format: Article
Language:English
Published: BMC 2019-07-01
Series:BMC Genomics
Subjects:
SNP
Online Access:http://link.springer.com/article/10.1186/s12864-019-5981-x
Description
Summary:Abstract Background High-resolution genetic linkage map is critical for QTL mapping, genome sequence assembly and marker-assisted selection in aquaculture species. The ridgetail white prawn Exopalaemon carinicauda is one of the most economic shrimp species naturally distributed in the coasts of eastern China and western Korea. However, quite limited genomics and genetics information have been exploited for genetic improvement of economic traits in this species. Results In the present study, we conducted genome survey and constructed high-resolution genetic linkage maps of the ridgetail white prawn with reciprocal-cross mapping family genotyped using next-generation sequencing approaches. The estimated genome size was 9.33 Gb with a heterozygosity of 0.26% and a repeat sequence ratio of 76.62%. 65,772 protein-coding genes were identified by genome annotation. A total of 10,384 SNPs were used to high-throughput genotyping and assigned to 45 linkage groups (LGs) from reciprocal backcross families of E. carinicauda, and the average marker distances were 0.73 cM and 0.55 cM, respectively. Based on the high-resolution linkage map, twenty-three QTLs related to five growth traits were detected. All QTLs could explain 8.8–15.7% of the total growth-traits variation. Conclusions The genome size of E. carinicauda was estimated more accurately by genome survey analysis, which revealed basic genomic architecture. The first high-resolution backcross genetic linkage map and QTLs related to growth traits will provide important information for QTL fine mapping, genome assembly and genetic improvement of E. carinicauda and other palaemon shrimps.
ISSN:1471-2164