Few-body Studies at the High Intensity γ-Ray Source (HIγS)

The HIγS facility is making it possible to perform studies of few body systems at a new level of accuracy and precision. A study of the photodisintegration of the deuteron using 100% linearly polarized beams at 14 and 16 MeV has determined the splittings of the three p-wave amplitudes involved i...

Full description

Bibliographic Details
Main Authors: Weller H.R., Stave S., Perdue B., Ahmed M.W.
Format: Article
Language:English
Published: EDP Sciences 2010-04-01
Series:EPJ Web of Conferences
Online Access:http://dx.doi.org/10.1051/epjconf/20100304002
Description
Summary:The HIγS facility is making it possible to perform studies of few body systems at a new level of accuracy and precision. A study of the photodisintegration of the deuteron using 100% linearly polarized beams at 14 and 16 MeV has determined the splittings of the three p-wave amplitudes involved in this process for the first time. These results show that the relativistic contributions, which when included in the theory lead to a positive value of the GDH integrand above 8 MeV, are valid. The near threshold data on the photodisintegration of the deuteron provide results which are used to extract the forward spin-polarizability of the deuteron for the first time. The experimental value is in good agreement with a recent effective field theory calculation. Measurements of the absolute differential cross section of the 3He(γ,n)pp reaction have been completed at three γ-ray energies. The measurements were made at incident γ-ray energies of 12.8, 13.5, and 14.7 MeV. It has been found that the shape of the outgoing neutron energy distribution at a given scattering angle at 12.8 MeV disagrees with current theoretical predictions. At these energies, the shape is consistent with a phase-space-only shape. At the higher energies, the measurements agree with theory.
ISSN:2100-014X