On kernels in strongly game-perfect digraphs and a characterisation of weakly game-perfect digraphs

We prove that the game-perfect digraphs defined by Andres (2012) with regard to a digraph version of the maker-breaker graph colouring game introduced by Bodlaender (1991) always have a kernel. Furthermore, we introduce weakly game-perfect digraphs related to another digraph version of Bodlaender’s...

Full description

Bibliographic Details
Main Author: Stephan Dominique Andres
Format: Article
Language:English
Published: Taylor & Francis Group 2020-01-01
Series:AKCE International Journal of Graphs and Combinatorics
Subjects:
Online Access:http://dx.doi.org/10.1016/j.akcej.2019.03.020
Description
Summary:We prove that the game-perfect digraphs defined by Andres (2012) with regard to a digraph version of the maker-breaker graph colouring game introduced by Bodlaender (1991) always have a kernel. Furthermore, we introduce weakly game-perfect digraphs related to another digraph version of Bodlaender’s graph colouring game, which was defined by Yang and Zhu (2010), and characterise the classes of weakly game-perfect digraphs by means of the classes of undirected game-perfect graphs.
ISSN:0972-8600
2543-3474