Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann...

Full description

Bibliographic Details
Main Authors: Sandra Kleinecke, Sarah Richert, Livia de Hoz, Britta Brügger, Theresa Kungl, Ebrahim Asadollahi, Susanne Quintes, Judith Blanz, Rhona McGonigal, Kobra Naseri, Michael W Sereda, Timo Sachsenheimer, Christian Lüchtenborg, Wiebke Möbius, Hugh Willison, Myriam Baes, Klaus-Armin Nave, Celia Michèle Kassmann
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2017-05-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/23332
id doaj-278b7784adc34b6b9b3600532a3126a2
record_format Article
spelling doaj-278b7784adc34b6b9b3600532a3126a22021-05-05T13:27:08ZengeLife Sciences Publications LtdeLife2050-084X2017-05-01610.7554/eLife.23332Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathySandra Kleinecke0Sarah Richert1Livia de Hoz2Britta Brügger3Theresa Kungl4Ebrahim Asadollahi5Susanne Quintes6Judith Blanz7Rhona McGonigal8Kobra Naseri9Michael W Sereda10Timo Sachsenheimer11Christian Lüchtenborg12Wiebke Möbius13https://orcid.org/0000-0002-2902-7165Hugh Willison14Myriam Baes15Klaus-Armin Nave16https://orcid.org/0000-0001-8724-9666Celia Michèle Kassmann17https://orcid.org/0000-0003-0993-9455Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyUniversity of Heidelberg, Biochemistry Center (BZH), Heidelberg, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyUnit of Molecular Cell Biology and Transgenic, Institute of Biochemistry, University of Kiel, Kiel, GermanyInstitute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United KingdomBirjand University of Medical Sciences, Birjand, IranDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyUniversity of Heidelberg, Biochemistry Center (BZH), Heidelberg, GermanyUniversity of Heidelberg, Biochemistry Center (BZH), Heidelberg, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyInstitute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, United KingdomDepartment of Pharmaceutical and Pharmacological Sciences, Cell Metabolism, KU Leuven- University of Leuven, Leuven, BelgiumDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyDepartment of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, GermanyImpairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.https://elifesciences.org/articles/23332peripheral neuropathyperoxisomeslysosomesmetabolic disordersaxo-glia interactionmyelin
collection DOAJ
language English
format Article
sources DOAJ
author Sandra Kleinecke
Sarah Richert
Livia de Hoz
Britta Brügger
Theresa Kungl
Ebrahim Asadollahi
Susanne Quintes
Judith Blanz
Rhona McGonigal
Kobra Naseri
Michael W Sereda
Timo Sachsenheimer
Christian Lüchtenborg
Wiebke Möbius
Hugh Willison
Myriam Baes
Klaus-Armin Nave
Celia Michèle Kassmann
spellingShingle Sandra Kleinecke
Sarah Richert
Livia de Hoz
Britta Brügger
Theresa Kungl
Ebrahim Asadollahi
Susanne Quintes
Judith Blanz
Rhona McGonigal
Kobra Naseri
Michael W Sereda
Timo Sachsenheimer
Christian Lüchtenborg
Wiebke Möbius
Hugh Willison
Myriam Baes
Klaus-Armin Nave
Celia Michèle Kassmann
Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
eLife
peripheral neuropathy
peroxisomes
lysosomes
metabolic disorders
axo-glia interaction
myelin
author_facet Sandra Kleinecke
Sarah Richert
Livia de Hoz
Britta Brügger
Theresa Kungl
Ebrahim Asadollahi
Susanne Quintes
Judith Blanz
Rhona McGonigal
Kobra Naseri
Michael W Sereda
Timo Sachsenheimer
Christian Lüchtenborg
Wiebke Möbius
Hugh Willison
Myriam Baes
Klaus-Armin Nave
Celia Michèle Kassmann
author_sort Sandra Kleinecke
title Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
title_short Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
title_full Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
title_fullStr Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
title_full_unstemmed Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
title_sort peroxisomal dysfunctions cause lysosomal storage and axonal kv1 channel redistribution in peripheral neuropathy
publisher eLife Sciences Publications Ltd
series eLife
issn 2050-084X
publishDate 2017-05-01
description Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.
topic peripheral neuropathy
peroxisomes
lysosomes
metabolic disorders
axo-glia interaction
myelin
url https://elifesciences.org/articles/23332
work_keys_str_mv AT sandrakleinecke peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT sarahrichert peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT liviadehoz peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT brittabrugger peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT theresakungl peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT ebrahimasadollahi peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT susannequintes peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT judithblanz peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT rhonamcgonigal peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT kobranaseri peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT michaelwsereda peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT timosachsenheimer peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT christianluchtenborg peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT wiebkemobius peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT hughwillison peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT myriambaes peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT klausarminnave peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
AT celiamichelekassmann peroxisomaldysfunctionscauselysosomalstorageandaxonalkv1channelredistributioninperipheralneuropathy
_version_ 1721461858684108800